Skip to main content
Log in

Influence of Al2O3 particle size on properties of thermoplastic starch–TiO2–Al2O3 composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermoplastic starch (TPS), an inexpensive, renewable, widely available and biodegradable biopolymer, has been promoted as a promising alternative to synthetic polymers based on fossil resources. However, it exhibits weak mechanical properties and high moisture uptake. Reinforcing fillers have been used to improve the properties of thermoplastic starch. This work studies the effects of Al2O3 particle size on dielectric, thermal, physical, mechanical and morphological properties of thermoplastic starch–TiO2–Al2O3 composites at the fixed TPS:TiO2:Al2O3 weight ratio 97:2:1. The Al2O3 particle sizes tested were 0.05 μm, 1 μm and 5 μm. Dielectric, thermal, mechanical and morphological properties were determined. With increasing Al2O3 particle size, slight increases were observed in contact angle, hardness and thermal stability, while dielectric constant, dissipation factor and glass transition temperature decreased. However, the Al2O3 particle size did not significantly affect tensile properties. Scanning electron microscopy was used to investigate the morphology in the composites. In summary, the incorporation of TiO2 and Al2O3 in thermoplastic starch could extend its potential in flexible films, compost bags and packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bertolini AC (2010) Starches: characterization, properties, and applications. CRC Press, Florida, p 6

    Google Scholar 

  2. Zhang S, Lin Z, Jiang G, Wang J, Wang DY (2018) Construction of chelation structure between Ca2+ and starch via reactive extrusion for improving the performances of thermoplastic starch. Compos Sci Technol 159:59–69

    Article  CAS  Google Scholar 

  3. Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188

    Article  CAS  PubMed  Google Scholar 

  4. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. Int J Biol Macromol 99:265–273

    Article  CAS  PubMed  Google Scholar 

  5. Lendvai L, Apostolov A, Kocsis JK (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572

    Article  CAS  PubMed  Google Scholar 

  6. Pardo IM, Shanks RA, Adhikari B, Adhikari R (2017) Thermoplastic starch-nanohybrid films with polyhedral oligomeric silsesquioxane. Carbohydr Polym 173:170–177

    Article  CAS  Google Scholar 

  7. Yang J, Tang K, Qin G, Chen Y, Peng L, Wan X, Xiao H, Xia Q (2017) Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydr Polym 166:256–263

    Article  CAS  PubMed  Google Scholar 

  8. Bergel BF, Luz LM, Santana RMC (2017) Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Prog Org Coat 106:27–32

    Article  CAS  Google Scholar 

  9. Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433

    Article  CAS  Google Scholar 

  10. Kelnar I, Kaprálková L, Brožová L, Hromádková J, Kotek J (2013) Effect of chitosan on the behaviour of the wheat B-starch nanocomposite. Ind Crops Prod 46:186–190

    Article  CAS  Google Scholar 

  11. Charoenkul N, Uttapap D, Pathipanawat W, Takeda Y (2011) Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT Food Sci Technol 44:1774–1781

    Article  CAS  Google Scholar 

  12. Zhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr Polym 122:456–480

    Article  CAS  PubMed  Google Scholar 

  13. Tanetrungroj Y, Prachayawarakorn J (2015) Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique. Songklanakarin J Sci Technol 32(2):193–199

    Google Scholar 

  14. Teixeira EM, Róz AL, Carvalho AJF, Curvelo AAS (2007) The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr Polym 69:619–624

    Article  CAS  Google Scholar 

  15. Prachayawarakorn J, Pomdage W (2014) Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers. Mater Des 61:264–269

    Article  CAS  Google Scholar 

  16. Jaramillo CM, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr Polym 151:150–159

    Article  CAS  Google Scholar 

  17. Monteiro MKS, Oliveira VRL, Santos FKG, Neto ELB, Leite RHL, Aroucha EMM, Silva RR, Silva KNO (2018) Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res Int 105:637–644

    Article  CAS  PubMed  Google Scholar 

  18. Clasen SH, Müller CMO, Parize AL, Pires ATN (2018) Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction. Carbohydr Polym 180:348–353

    Article  CAS  PubMed  Google Scholar 

  19. Campos A, Neto ARS, Rodrigues VB, Luchesi BR, Mattoso LHC, Marconcini JM (2018) Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Ind Crops Prod 124:149–154

    Article  CAS  Google Scholar 

  20. Nasrabadi BN, Behzad T, Bagheri R (2014) Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites. Fiber Polym 15(2):347–354

    Article  CAS  Google Scholar 

  21. Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Thermoplastic starch/natural rubber blends. Carbohydr Polym 53:95–99

    Article  CAS  Google Scholar 

  22. Schlemmer D, Sales MJA, Resck IS (2009) Degradation of different polystyrene/thermoplastic starch blends buried in soil. Carbohydr Polym 75:58–62

    Article  CAS  Google Scholar 

  23. Ardakani KM, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70:1557–1563

    Article  CAS  Google Scholar 

  24. Liu Z, Dong Y, Men H, Jiang M, Tong J, Zhou J (2012) Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydr Polym 89:473–477

    Article  CAS  PubMed  Google Scholar 

  25. Tian H, Yan J, Rajulu AV, Xiang A, Luo X (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523

    Article  CAS  PubMed  Google Scholar 

  26. Cerclé C, Sarazin P, Favis BD (2013) High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydr Polym 92:138–148

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira WH, Khalili RR, Figueira Junior MJM, Andrade CT (2014) Effect of organoclay on blends of individually plasticized thermoplastic starch and polypropylene. Ind Crops Prod 52:38–45

    Article  CAS  Google Scholar 

  28. Yang Y, Tang Z, Xiong Z, Zhe J (2015) Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). Int J Biol Macromol 77:273–279

    Article  CAS  PubMed  Google Scholar 

  29. Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262

    Article  CAS  PubMed  Google Scholar 

  30. Lv S, Zhang Y, Gu J, Tan H (2018) Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Int J Biol Macromol 113:338–344

    Article  CAS  PubMed  Google Scholar 

  31. Mahieu A, Terrié C, Youssef B (2015) Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: influence of water content. Ind Crops Prod 72:192–199

    Article  CAS  Google Scholar 

  32. Mendes JF, Paschoalin RT, Carmona VB, Neto ARS, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458

    Article  CAS  PubMed  Google Scholar 

  33. Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643

    Article  CAS  PubMed  Google Scholar 

  34. Marinho VAD, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Candedo EL (2017) Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends. Polym Test 58:166–172

    Article  CAS  Google Scholar 

  35. Xu P, Zeng Q, Cao Y, Ma P, Dong W, Chen M (2017) Interfacial modification on polyhydroxyalkanoates/starch blend by grafting in-situ. Carbohydr Polym 174:716–722

    Article  CAS  PubMed  Google Scholar 

  36. Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2013) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168

    Article  CAS  Google Scholar 

  37. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956

    Article  CAS  Google Scholar 

  38. González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90

    Article  CAS  PubMed  Google Scholar 

  39. Karimi S, Abdulkhani A, Tahir PM, Dufresne A (2016) Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites. Int J Biol Macromol 91:1040–1044

    Article  CAS  PubMed  Google Scholar 

  40. Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol 112:442–447

    Article  CAS  PubMed  Google Scholar 

  41. Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116:272–280

    Article  CAS  PubMed  Google Scholar 

  42. López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocoll 43:18–24

    Article  CAS  Google Scholar 

  43. Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421

    Article  CAS  Google Scholar 

  44. Requena VHC, Rivas BL, Pérez MA, Figueroa CR, FigueroaN E, Sanfuentes EA (2017) Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol Technol 129:29–36

    Article  CAS  Google Scholar 

  45. Guz L, Famá L, Candal R, Goyanes S (2017) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1619

    Article  CAS  PubMed  Google Scholar 

  46. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264

    Article  CAS  PubMed  Google Scholar 

  47. Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L (2011) Poly(lactic acid)/titanium dioxide nanocomposite films: influence of processing procedure on dispersion of titanium dioside and photocatalytic activity. Polym Compos 32(4):519–528

    Article  CAS  Google Scholar 

  48. Amin KAM, Panhuis M (2012) Reinforced materials based on chitosan, TiO2 and Ag composites. Polymers 4:590–599

    Article  CAS  Google Scholar 

  49. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579

    Article  CAS  Google Scholar 

  50. Ostafińska A, Mikešová J, Krejčíková S, Nevoralová M, Šturcová A, Zhigunov A, Michálková D, Šlouf M (2017) Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties. Int J Biol Macromol 101:273–282

    Article  CAS  PubMed  Google Scholar 

  51. Chen JP, Liu T, Zhang J, Wang BB, Ying J, Liu F, Zhang XB (2014) Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Appl Phys A Mater Sci Process 117:1985–1992

    Article  CAS  Google Scholar 

  52. Tangboriboon N, Uttanawanit N, Longtong M, Wongpinthong P, Sirivat A, Kunanuruksapong R (2010) Electrical and electrorheological properties of alumina/natural rubber (STR XL) composites. Materials 3:656–671

    Article  CAS  PubMed Central  Google Scholar 

  53. Venkatesulu B, Thomas MJ (2010) Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Trans Dielectr Electr Insul 17(2):615–624

    Article  CAS  Google Scholar 

  54. Kurtycz P, Ciach T, Olszyna A, Kunicki A, Roslon M, Wilczynska JD, Nowak K, Anuszewska E (2013) Electrospun poly(l-lactic) acid/nanoalumina (PLA/Al2O3) composite fiber mats with potential biomedical application- Investigation of cytotoxicity. Fiber Polym 14(4):578–583

    Article  CAS  Google Scholar 

  55. Verma V, Shukla DK, Kumar V (2014) Estimation of fatique life of epoxy-alumina polymer nanocomposites. Proc Mater Sci 5:669–678

    Article  CAS  Google Scholar 

  56. Gandhi MR, Viswanathan N, Meenakshi S (2010) Preparation and application of alumina/chitosan biocomposite. Int J Biol Macromol 47:146–154

    Article  CAS  Google Scholar 

  57. Golie WM, Upadhyayula S (2017) An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol 97:489–502

    Article  CAS  PubMed  Google Scholar 

  58. ASTM (2014) Proceedings of the D638-14. Standard test method for tensile properties of plastics, ASTM International, West Conshohocken

  59. ASTM (2015) Proceedings of the D2240-15. Standard test method for rubber property—durometer hardness. ASTM International, West Conshohocken

  60. Kumar ER, Kamzin AS, Prakash T (2015) Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J Magn Magn Mater 378:389–396

    Article  CAS  Google Scholar 

  61. Motwani T, Seetharaman K, Anantheswaran RC (2007) Dielectric properties of starch slurries as influenced by starch concentration and gelatinization. Carbohydr Polym 67:73–79

    Article  CAS  Google Scholar 

  62. Chi QG, Dong JF, Liu GY, Chen Y, Wang X, Lei QQ (2015) Effect of particle size on the dielectric properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5 (Ba0.7Ca0.8)TiO3/polyvinylidene fluoride hybrid films. Ceram Int 41(10):15116–15121

    Article  CAS  Google Scholar 

  63. Yoon JR, Han JW, Lee KM, Lee HY (2009) Dielectric properties of polymer-ceramic capacitors. Trans Electr Electron Mater 10(4):116–120

    Article  Google Scholar 

  64. Xiaofei M, Jiugao Y, Jin F (2004) Urea and formamide as a mixed plasticizer forthermoplastic starch. Polym Int 53:1780–1785

    Article  CAS  Google Scholar 

  65. Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115

    Article  CAS  Google Scholar 

  66. Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364

    Article  CAS  Google Scholar 

  67. Liawthanyarat N, Rimdusit S (2015) Effects of particles size of nanosilica on properties of polybenzoxazine nanocomposites. Key Eng Mater 659:394–398

    Article  Google Scholar 

  68. Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics-A review. Crit Rev Food Sci Nutr 54(10):1353–1370

    Article  CAS  PubMed  Google Scholar 

  69. Horstmann SW, Belz MCE, Heitmann M, Zannini E, Arendt EK (2016) Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 5(1–12):30

    Article  CAS  PubMed Central  Google Scholar 

  70. Mendoza JS, Urzola SP, Rhenals DL, Flórez JF (2018) Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA 85(204):223–230

    Article  CAS  Google Scholar 

  71. Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372

    Article  CAS  PubMed  Google Scholar 

  72. Radford KC (1971) The mechanical properties of an epoxy resin with a second phase dispersion. J Mater Sci 6:1286–1291

    Article  CAS  Google Scholar 

  73. Singh RP, Zhang M, Chan D (2002) Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J Mater Sci 37:781–788

    Article  CAS  Google Scholar 

  74. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961

    Article  CAS  Google Scholar 

  75. Mohamed MA, Shaltout NA, El Miligy AA (2011) The effect of gamma irradiation and particle size of CaCO3 on the properties of HDPE/EPDM blends. Arab J Chem 4:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Prince of Songkla University, Surat Thani campus, in 2015. The authors would like to express their gratitude to the Faculty of Earth Science, Universiti Malaysia Kelantan, and the Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani campus. The assistance with manuscript preparation by Assoc. Prof. Dr. Seppo Karrila is also sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannarat Chueangchayaphan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueangchayaphan, N., Ting, K.A., Yusoff, M. et al. Influence of Al2O3 particle size on properties of thermoplastic starch–TiO2–Al2O3 composites. Polym. Bull. 76, 5889–5902 (2019). https://doi.org/10.1007/s00289-019-02688-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02688-0

Keywords

Navigation