Skip to main content
Log in

Biocomposites based on plasticized starch: thermal, mechanical and morphological characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research, a composite material based on thermoplastic starch (TPS) obtained from pich seeds (Enterolobium cyclocarpum) filled with solid particles of their own shell (PP) was elaborated and fully characterized by different techniques such as DSC, TGA, FTIR, tensile test and SEM. All composites showed good dispersion of the shell particles within the matrix. Particles size and concentration effect over the mechanical, morphologic and thermic properties were studied. Calorimetric characterization by DSC exhibited an increment in ΔHf as PP concentration was increased, while TGA analysis shown thermal events associated to decomposition of hemicellulose followed by cellulose and finally lignin components. Pich TPS/PP composite material FTIR spectrum clearly displayed absorption bands corresponding to amylose and amylopectin, cellulose, hemicellulose and lignin organic groups. SEM analysis identified average diameters in shell particles (PP) around 1180 μm, 600 μm and 425 μm. Higher mechanical properties corresponding to maximum stress (σmax) and elastic modulus (E) were obtained for composites manufactured with particle size of 600 µm and 5% concentration. These results are consistent with the static mechanical behaviour, which vary according to the filler content. It is shown that the addition of PP fillers improves the thermal resistance and mechanical properties of these biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashok A, Abhijith R, Rejeesh CR (2018) Material characterization of starch derived bio degradable plastics and its mechanical property estimation. Mater Today Proc 5:2163–2170. https://doi.org/10.1016/j.matpr.2017.09.214

    Article  CAS  Google Scholar 

  2. Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116:272–280. https://doi.org/10.1016/j.ijbiomac.2018.04.186

    Article  CAS  PubMed  Google Scholar 

  3. Jamir K, Seshagirirao K (2017) Isolation, characterization and comparative study of starches from selected Zingiberaceae species, a non-conventional source. Food Hydrocolloids 72:247–253. https://doi.org/10.1016/j.foodhyd.2017.06.004

    Article  CAS  Google Scholar 

  4. Bertoft E (2018) Analyzing starch molecular structure. In: Sjöö M, Nilsson L (eds) Starch in food, 2nd edn. Woodhead Publishing, pp 97–149

  5. Mo XZ, Zhong YX, Pang JY, Guo T, Qi X (2011) Experimental investigation of the thermoplastic Tapioca starch/sisal fiber composites. Adv Mater Res 221:586–591. https://doi.org/10.4028/www.scientific.net/AMR.221.586

    Article  CAS  Google Scholar 

  6. Estrada-León RJ, Moo-Huchin VM, Ríos-Soberanis CR et al (2016) The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocolloids 57:1–9. https://doi.org/10.1016/j.foodhyd.2016.01.008

    Article  CAS  Google Scholar 

  7. Moo-Huchin VM, Cabrera-Sierra MJ, Estrada-León RJ et al (2015) Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum swartz seeds. Food Hydrocolloids 45:48–54. https://doi.org/10.1016/j.foodhyd.2014.11.009

    Article  CAS  Google Scholar 

  8. Ma XF, Yu JG, Wang N (2007) Fly ash-reinforced thermoplastic starch composites. Carbohydr Polym 67:32–39. https://doi.org/10.1016/j.carbpol.2006.04.012

    Article  CAS  Google Scholar 

  9. Huang M, Yu J (2006) Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites. J Appl Polym Sci 99:170–176. https://doi.org/10.1002/app.22046

    Article  CAS  Google Scholar 

  10. de Andrés CP (2003) La conservación del material arqueológico subacuático: el arqueológo y el restaurador ante las primeras intervenciones. Monte Buciero 9:83–93

    Google Scholar 

  11. Álvarez Morales G, Melgarejo Velásquez L, Castañeda Nieto Y (2003) Ganancia de peso, conversión y eficiencia alimentaria en ovinos alimentados con fruto (semilla con vaina) de parota (Enterolobium cyclocarpum) y pollinaza. Vet México 34:39–46

    Google Scholar 

  12. Serratos Arévalo JC, Carreón Amaya J, Castañeda Vázquez H, De Garzón P, la Mora J, Estrada G (2008) Composición químico-nutricional y de factores antinutricionales en semillas de parota (Enterolobium cyclocarpum). Interciencia 33:850–854

    Google Scholar 

  13. Babayemi O (2006) Antinutritional factors, nutritive value and in vitro gas production of foliage and fruit of Enterolobium cyclocarpum. World J Zool 1:113–117

    Google Scholar 

  14. Viveros Viveros H, Hernández Palmeros JD, Velasco García MV et al (2015) Análisis de semilla, tratamientos pregerminativos de Enterolobium cyclocarpum (Jacq.) Griseb. y su crecimiento inicial. Revista mexicana de ciencias forestales 6:52–65

    Article  Google Scholar 

  15. Benítez Ramos RF, Montesinos Lagos J (1988) Catálogo de cien especies forestales de Honduras: distribución, propiedades y usos. Escuela Nacional de Ciencias Forestales, Siguatepeque

    Google Scholar 

  16. Echenique Manrique R, Plumptre R (1994) Guía para el uso de maderas de Belice y México. Universidad de Guadalajara, Consejo Británico, Laboratorio de Ciencia y Tecnología de la Madera, A. C., Universidad de Oxford, Oxford

  17. Rutiaga-Quiñones JG (2001) Chemische und biologische Untersuchungen zum Verhalten dauerhafter Holzarten und ihrer Extrakte gegenüber holzabbauenden Pilzen. Buchverl, Gräfelfing

    Google Scholar 

  18. Velásquez J, Toro ME, Rojas L, Encinas O (2006) Actividad antifúngica in vitro de los extractivos naturales de especies latifoliadas de la Guayana Venezolana. Madera y bosques 12:51–61

    Article  Google Scholar 

  19. Téllez-Sánchez C, Ochoa-Ruiz H, Sanjuan-Dueñas R, Rutiaga-Quiñones J (2010) Componentes químicos del duramen de Andira inermis (W. Wright) DC. (Leguminosae). Revista Chapingo Serie ciencias forestales y del ambiente 16:87–93

    Google Scholar 

  20. H Viitanen, L Paajanen, P Saranpää, P Viitaniemi (1997) Durability of larch (Larix spp) wood against brown-rot fungi. In: International research group on wood preservation (Sweden)

  21. Pineda Gomez P, Bedoya HincapiÉ CM, Rosales Rivera A (2011) Estimación de los parámetros cinéticos y tiempo de vida de la cáscara de arroz y arcilla mediante la técnica de análisis termogravimétrico (TGA). Dyna 78:207–214

    Google Scholar 

  22. Jiménez LF, Baquero MC, Díaz JdJ (2006) Carbonizados de origen vegetal (COV) para la generación de antroposoles. obtención y caracterización fisicoquímica. Revista Colombiana de Química 35:177–190

    Google Scholar 

  23. Betancourt S, Gañán P, Jímenez A, Cruz L (2009) Degradación térmica de fibras naturales procedentes de la calceta de plátano (estudio cinético). Suplemento de la Revista Latinoamericana de Metalurgia y Materiales 1:215–219

    Google Scholar 

  24. Liu X, Yu L, Xie F, Li M, Chen L, Li X (2010) Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch Stärke 62:139–146. https://doi.org/10.1002/star.200900202

    Article  CAS  Google Scholar 

  25. Coates J (2000) Encyclopedia of analytical chemistry: interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley and Sons, Chichester, UK, pp 10815–10837

  26. Hiorns R (2000) Polymer handbook. In: Brandup J, Immergut EH, Grulke EA (eds) Polymer International, 4th edn. John Wiley and Sons, New York, p 2250

  27. Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. https://doi.org/10.1016/j.carbpol.2010.04.073

    Article  CAS  Google Scholar 

  28. Afanasev NI, Prokshin GF, Lichutina TF et al (2007) Effect of residual lignin on the supramolecular structure of sulfate hardwood cellulose: a Fourier IR study. Russ J Appl Chem 80:1724–1727. https://doi.org/10.1134/s1070427207100254

    Article  CAS  Google Scholar 

  29. Mestanza Mateos M (2012) Estudio de materiales adsorbentes para el tratamiento de aguas contaminadas con colorantes. Universidad Complutense de Madrid, Madrid, Spain

  30. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  31. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<1969:AID-APP6>3.0.CO;2-D

    Article  CAS  Google Scholar 

  32. Dai D, Fan M (2010) Characteristic and performance of elementary hemp fibre. Mater Sci Appl 1:336

    CAS  Google Scholar 

  33. Mina J (2012) Caracterización físico-mecánica de un almidón termoplástico (TPS) de yuca y análisis interfacial con fibras de fique. Biotecnología en el Sector Agropecuario y Agroindustrial 10:99–109

    Google Scholar 

  34. Galdeano MC, Grossmann MVE, Mali S, Bello-Perez LA, Garcia MA, Zamudio-Flores PB (2009) Effects of production process and plasticizers on stability of films and sheets of oat starch. Mater Sci Eng C 29:492–498. https://doi.org/10.1016/j.msec.2008.08.031

    Article  CAS  Google Scholar 

  35. Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14:127–135. https://doi.org/10.1023/a:1022015712170

    Article  CAS  PubMed  Google Scholar 

  36. Aburto J, Alric I, Thiebaud S et al (1999) Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci 74:1440–1451. https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1440:AID-APP17>3.0.CO;2-V

    Article  CAS  Google Scholar 

  37. Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115. https://doi.org/10.1016/j.lwt.2014.01.024

    Article  CAS  Google Scholar 

  38. Molinari EC (2016) Relación entre Propiedades Tribológicas y Estructura de Polietilenos. Universidad Nacional del Sur, Bahía Blanca, Argentina

  39. Liang JZ, Li RKY, Tjong SC (1998) Morphology and tensile properties of glass bead filled low density polyethylene composites: material properties. Polym Test 16:529–548. https://doi.org/10.1016/S0142-9418(97)00017-2

    Article  Google Scholar 

  40. Liang J-Z (2013) Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Compos B Eng 51:224–232. https://doi.org/10.1016/j.compositesb.2013.03.019

    Article  CAS  Google Scholar 

  41. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Tecnológico Nacional de México, for the financial support for the project 5697.19-P and to the Mexican Council for Science and Technology (CONACYT) for the provision of the scholarship for Master student Juan Pablo Colli-Pacheco. The authors thank M.C. José Rodriguez Laviada for his technical assistance on FTIR and DSC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Pérez-Pacheco.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Soberanis, C.R., Collí-Pacheco, J.P., Estrada-León, R.J. et al. Biocomposites based on plasticized starch: thermal, mechanical and morphological characterization. Polym. Bull. 78, 3687–3704 (2021). https://doi.org/10.1007/s00289-020-03261-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03261-w

Keywords

Navigation