Skip to main content
Log in

Preparation, characterization and electrical behaviors of PEDOT:PSS-Au/Ag nanocomposite thin films: an ecofriendly approach

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Structure, morphology and electrical behaviors of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) or PEDOT:PSS thin films are investigated in the presence of protein-mediated green chemically synthesized positively charged gold and silver nanoparticles. The pure and PEDOT:PSS nanocomposite thin films are prepared by spin coating method. The presence of both nanoparticle and polymer is confirmed from X-ray diffraction, whereas composite formation is confirmed from Raman and FTIR spectroscopy. Atomic force microscopy (AFM) images show the surface morphologies of both pure and composite films, whereas average film thicknesses are obtained from AFM and X-ray reflectivity analysis. The presence of electrostatic interaction between the positively charged metallic nanoparticles and negatively charged PSS chains leads to the electrostatic shielding between cationic PEDOT and anionic PSS, which favors better charge transfer through PEDOT–PEDOT conducting paths. The increase in electrical conductivity is visualized from the current–voltage (IV) curves, which show that the conductivity is relatively higher in the presence of silver than gold nanoparticles in the composite thin films. The conductivity of nanocomposite films is approximately five to six times enhanced in comparison with the pristine PEDOT:PSS thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Skotheim TA, Dekker M (eds) (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  2. Ouyang J (2013) Secondary doping methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Display 34:423–436. https://doi.org/10.1007/s00289-014-1255-6

    Article  CAS  Google Scholar 

  3. Xia Y, Ouyang J (2009) Salt induced charge screening and significant conductivity enhancement of conducting poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate). Macromolecules 42:4141–4147. https://doi.org/10.1021/ma900327d

    Article  CAS  Google Scholar 

  4. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  5. Nardes AM, Kemerink M, de Kok MM, Vinken E, Maturova K, Janssen RAJ (2008) Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol. Org Electron 9:727–734. https://doi.org/10.1016/j.orgel.2008.05.006

    Article  CAS  Google Scholar 

  6. Wynne KJ, Street B (1982) Conducting polymer: a short review. Ind Eng Chem Prod Res Dev 21:23–28. https://doi.org/10.1021/i300005a005

    Article  CAS  Google Scholar 

  7. Groenendaal LB, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:73.3.CO;2-3

    Article  CAS  Google Scholar 

  8. Xia Y, Ouyang J (2012) Significant different conductivities of the two grades of Poly(3,4ethylenedioxythiophene):poly(styrenesulfonate), clevios P and clevios PH1000, arising from different molecular weights. ACS Appl Mater Interfaces 4:4131–4140. https://doi.org/10.1021/am300881m

    Article  CAS  PubMed  Google Scholar 

  9. Heywang G, Jonas F (1992) Poly (alkylenedioxythiophene)s-new, very stable conducting polymer. Adv Mater 4:116–118. https://doi.org/10.1002/adma.19920040213

    Article  CAS  Google Scholar 

  10. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088. https://doi.org/10.1039/B417803N

    Article  CAS  Google Scholar 

  11. Chen Y, Xu J, Yang Y, Zhao Y, Yang W, Mao X, He X, Li S (2016) The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim Acta 193:199–205. https://doi.org/10.1016/j.electacta.2016.02.021

    Article  CAS  Google Scholar 

  12. Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinido E, Strakosas X, Tassone C, Delongchamp DM, Malliaras GG (2016) Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun 7:11287–11296. https://doi.org/10.1038/ncomms11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inganas O (2011) Organic photovoltaics: avoiding indium. Nat Photon 5:201–202. https://doi.org/10.1038/nphoton.2011.46

    Article  CAS  Google Scholar 

  14. Ouyanga J, Xua Q, Chua CW, Yanga Y, Lib G, Shinarb J (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45:8443–8450. https://doi.org/10.1016/j.polymer.2004.10.001

    Article  CAS  Google Scholar 

  15. Wang W, Ruderer MA, Metwalli E, Guo S, Herzig EM, Perlich J, Buschbaum PM (2015) Effect of methanol addition on the resistivity and morphology of PEDOT:PSS layers on top of carbon nanotubes for use as flexible electrodes. ACS Appl Mater Interfaces 7:8789–8797. https://doi.org/10.1021/acsami.5b01327

    Article  CAS  PubMed  Google Scholar 

  16. Yi C, Wilhite A, Zhang L, Hu R, Chuang SSC, Zheng J, Gong X (2015) Enhance thermoelectric properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by binary secondary dopants. ACS Appl Mater Interfaces 7(17):8984–8989. https://doi.org/10.1021/acsami.5b01960

    Article  CAS  PubMed  Google Scholar 

  17. Fan B, Mei X, Ouyang J (2008) Significant conductivity enhancement of conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 41:5971–5973. https://doi.org/10.1021/ma8012459

    Article  CAS  Google Scholar 

  18. Ouyang J (2013) Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. ACS Appl Mater Interfaces 5:13082–13088. https://doi.org/10.1021/am404113n

    Article  CAS  PubMed  Google Scholar 

  19. Breimer MA, Yevgeny G, Sy S, Sadik OA (2001) Incorporation of metal nanoparticle in photopolymerized organic conducting polymers: a mechanistic insight. Nano Lett 1:305–308. https://doi.org/10.1021/nl015528w

    Article  CAS  Google Scholar 

  20. Cao Z, Chen Z, Escoubas L (2014) Optical, structural and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms. Opt Mater Express 4:2525–2534. https://doi.org/10.1364/OME.4.002525

    Article  CAS  Google Scholar 

  21. Semaltianos NG, Perrie W, Romani S, Potter RJ, Dearden G, Watkins KG (2012) Polymer-nanoparticle composites composed of PEDOT:PSS and nanoparticles of Ag synthesised by laser ablation. Colloid Polym Sci 290:213–220. https://doi.org/10.1007/s00396-011

    Article  CAS  Google Scholar 

  22. Yijie X, Ouyang J (2010) Anion effect on salt induced conductivity enhancement of poly(3,4-ethyleneoxythiophene):poly(styrenresulfonate) films. Org Electron 11:1129–1135. https://doi.org/10.1016/j.orgel.2010.04.007

    Article  CAS  Google Scholar 

  23. Xia Y, Zhang H, Ouyang J (2010) Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J Mater Chem 20:9740–9747. https://doi.org/10.1039/C0JM01593H

    Article  CAS  Google Scholar 

  24. Zotti G, Zecchin S, Schiavon G, Louwet F, Groenendaal L, Crispin X, Osikowicz W, Salaneck W, Fahlman M (2003) Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of Poly(3,4-ethylenedioxythiophene). Macromolecules 36:3337–3344. https://doi.org/10.1021/ma021715k

    Article  CAS  Google Scholar 

  25. Valtakari D, Bollström R, Toivakka M, Saarinen JJ (2015) Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly (3,4ethylenedioxythiophene):poly (styrenesulfonate) films. Thin Solid Films 590:170–176. https://doi.org/10.1016/j.tsf.2006.05.015

    Article  CAS  Google Scholar 

  26. Wang Q, Eslamian M (2016) Improving uniformity and nanostructure of solution-processed thin films using ultrasonic substrate vibration post treatment (SVPT). Ultrasonics 67:55–64. https://doi.org/10.1016/j.ultras.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  27. Kumar SS, Kumar CS, Mathiyarasu J, Phani KL (2007) Stabilized gold nanoparticles by reduction using 3,4-Ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis. Langmuir 23:3401–3408. https://doi.org/10.1021/la063150h

    Article  CAS  PubMed  Google Scholar 

  28. Xiong Z, Dong C, Cai H, Liu C, Zhang X (2013) Composite inks of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/silver nanoparticles and electric/optical properties of inkjet-printed thin films. Mater Chem Phys 141:416–423. https://doi.org/10.1016/j.matchemphys.2013.05.035

    Article  CAS  Google Scholar 

  29. Malendez RG, Moreno KJ, Moggio I, Arias E, Ponce A, Llanera I, Moya SE (2010) On the influence of silver nanoparticles size in the electrical conductivity of PEDOT:PSS. Mater Sci Forum 644:85–90. https://doi.org/10.4028/www.scientific.net/MSF.644.85

    Article  CAS  Google Scholar 

  30. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369. https://doi.org/10.1103/PhysRev.95.359

    Article  Google Scholar 

  31. Daillant J, Gibaud A (1999) X-ray and neutron reflectivity: principles and applications. Springer, Berlin

    Google Scholar 

  32. Tolan M (1999) Reflectivity of X-rays from surfaces. Springer, Berlin

    Google Scholar 

  33. Yang T, Li Z, Wang L, Guo C, Sun Y (2007) Synthesis, characterization, and self assembly of protein lysozyme monolayer-stabilized gold nanoparticles. Langmuir 23:10533–10538. https://doi.org/10.1021/la701649z

    Article  CAS  PubMed  Google Scholar 

  34. Xie J, Lee JY, Wang DIC (2007) Synthesis of single-crystalline gold nanoparticles in aqueous solution through biomineralization by serum albumin protein. J Phys Chem C 111:10226–10232. https://doi.org/10.1021/jp0719715

    Article  CAS  Google Scholar 

  35. Bakshi MS, Kaur H, Banipal TS, Singh N, Kaur G (2010) Biomineralization of gold nanoparticles by lysozyme and cytochrome c and their application in protein film formation. Langmuir 26:13535–13544. https://doi.org/10.1021/la101701f

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Liu X, Fu C, Tan L, Liu H (2015) Biosynthesis of fluorescent gold nanoclusters for in vitro and in vivo tumor imaging. Opt Commun 355:567–574. https://doi.org/10.1016/j.optcom.2015.07.023

    Article  CAS  Google Scholar 

  37. Bhargava SK, Booth JM, Agrawal S, Coloe P, Kar G (2005) Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21:5949–5956. https://doi.org/10.1021/la050283e

    Article  CAS  PubMed  Google Scholar 

  38. Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47:565–567. https://doi.org/10.1039/c0cc02398a

    Article  CAS  Google Scholar 

  39. Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 101:184–190. https://doi.org/10.1016/j.saa.2012.09.031

    Article  CAS  Google Scholar 

  40. Alemu D, Wei HY, Hod KC, Chu CW (2012) Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671. https://doi.org/10.1039/C2EE22595F

    Article  CAS  Google Scholar 

  41. Kim H, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafafi ZH, Chrisey DB (1999) Indium tin oxide thin films for organic light-emitting devices. Appl Phys Lett 74:3444–3446. https://doi.org/10.1063/1.124122

    Article  CAS  Google Scholar 

  42. Xia Y, Sun K, Ouyang J (2012) Highly conductive poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy Environ Sci 5:5325–5332. https://doi.org/10.1039/C1EE02475B

    Article  CAS  Google Scholar 

  43. Banwell CN, McCash EM (1995) Fundamental of molecular spectroscopy. McGraw-Hill International Limited, UK

    Google Scholar 

  44. Talukdar H, Kundu S (2017) Thin films of protein (BSA, lysozyme)-polyelectrolyte (PSS) complexes show larger red-shift in optical emissions irrespective of protein conformation. J Mol Struct 1143:84–90. https://doi.org/10.1016/j.molstruc.2017.04.074

    Article  CAS  Google Scholar 

  45. Koyama T, Matsuno T, Yokoyama Y, Kishida H (2015) Photoluminescence of poly (3,4ethylenedioxythiophene):poly(styrenesulfonate) in the visible region. J Mater Chem C 3:8307–8310. https://doi.org/10.1039/C5TC01531F

    Article  CAS  Google Scholar 

  46. Dimitriev OP, Piryatinski YP, Pud AA (2011) Evidence of the controlled Interaction PEDOT and PSS in the PEDOT.PSS complex via concentration changes of the complex solution. J Phys Chem B 115:1357–1362. https://doi.org/10.1021/jp110545t

    Article  CAS  PubMed  Google Scholar 

  47. Gasiorowski J, Menon R, Hingerl K, Dachev M, Sariciftci NS (2013) Surface morphology, optical properties and conductivity changes of poly(3,4 ethylene dioxyt hiophene):poly (styrenesulfonate) by using additives. Thin Solid Films 536:211–215. https://doi.org/10.1016/j.tsf.2013.03.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Kyaw AKK, Yin C, Wang F, Zhu Q, Tang T, Yee PI, Xu J (2018) Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid. RSC Adv 8:18334–18340. https://doi.org/10.1039/c8ra02058b

    Article  CAS  Google Scholar 

  49. de Aubin C, Hemmerle SJ, Boulmedais F, Vallat MF, Nardin M, Schaaf P (2012) New 2-in-1 Polyelectrolyte step-by-step film buildup without solution alternation: from PEDOT-PSS to polyelectrolyte complexes. Langmuir 28:8681–8691. https://doi.org/10.1021/la301254a

    Article  CAS  Google Scholar 

  50. Barba MS, Kelly AM (2010) Surfaces-enhanced raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles. J Phys Chem C 114:6822–6830. https://doi.org/10.1021/jp100135x

    Article  CAS  Google Scholar 

  51. Wang W, Lei W, Yao T, Xia X, Huang W, Hao Q, Wang X (2013) One-pot of graphene/SnO2/PEDOT ternary electrode material for supercapacitor. Electrochim Acta 108:118–126. https://doi.org/10.1016/j.electacta.2013.07.012

    Article  CAS  Google Scholar 

  52. Zhang L, Peng H, Kilmartin PA, Soeller C, Sejdic JT (2008) Poly(3,4-ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity. Macromolecules 41:7671–7678. https://doi.org/10.1021/ma8013228

    Article  CAS  Google Scholar 

  53. Wang XJ, Wong KY (2006) Effects of a base coating used for electropolymerization of poly (3,4-ethylenedioxythiophene) on indium tin oxide electrode. Thin Solid Films 515:1573–1578. https://doi.org/10.1016/j.tsf.2006.05.015

    Article  CAS  Google Scholar 

  54. Sze PW, Lee KW, Huang PC, Chou DW, Kao BS, Huang CJ (2017) The investigation of high quality PEDOT:PSS film by multilayer-processing and acid treatment. Energies 10:716–727. https://doi.org/10.3390/en10050716

    Article  CAS  Google Scholar 

  55. Han MG, Foulger SH (2004) Crystalline colloidal arrays composed of Poly(3,4-ethylenedioxythiophene)-coated polystyrene particles with a stop band in the visible regime. Adv Mater 16:231–234. https://doi.org/10.1002/adma.200305642

    Article  CAS  Google Scholar 

  56. Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) In situ spectroelectrochemical characterization of Poly(3,4-ethylenedioxythiophene). Electrochim Acta 44:2739–2750. https://doi.org/10.1016/S0013-4686(98)00405-8

    Article  CAS  Google Scholar 

  57. Cristovan FH, Nascimento CM, Bell MJV, Laureto E, Duarte JL, Dias IFL, Cruz OW, Marletta A (2006) Synthesis and optical characterization of poly (styrene sulfonate) films doped with Nd(III). Chem Phys 326:514–520. https://doi.org/10.1016/j.chemphys.2006.03.014

    Article  CAS  Google Scholar 

  58. Friedel B, Keivanidis PE, Brenner TJK, Abrusci A, McNeill CR, Friend RH, Greenham NC (2009) Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 42:6741–6747. https://doi.org/10.1021/ma901182u

    Article  CAS  Google Scholar 

  59. Tsujimoto T, Takayama T, Uyama H (2015) Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymer 7:2165–2174. https://doi.org/10.3390/polym7101506

    Article  CAS  Google Scholar 

  60. Mo Z, Zhang H (1995) The degree of crystallinity in polymers by wide-angle X-Ray diffraction (WAXD). Rev Macromol Chem Phys C35(4):555–580. https://doi.org/10.1080/15321799508021751

    Article  CAS  Google Scholar 

  61. Bhowal AC, Kundu S (2016) Time dependent gold nanoclusters and nanocrystals formation on BSA at solid-water and air-solid interfaces. J Mol Liq 224:89–94. https://doi.org/10.1016/j.molliq.2016.09.057

    Article  CAS  Google Scholar 

  62. Zhou J, Anjum DH, Chen L, Xu X, Ventura IA, Jiang L, Lubineau G (2014) The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses. J Mater Chem C 2:9903–9910. https://doi.org/10.1039/C4TC01593B

    Article  CAS  Google Scholar 

  63. Bahk JH, Favaloro T, Shakouri A (2013) Thin film thermoelectric characterisation techniques, annual review of heat transfer. Begell House Inc., New York

    Google Scholar 

  64. Schroder DK (1998) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This study is financially supported by DST, Government of India. Authors would like to acknowledge Dr. Kaushik Das and Mr. Subhankar Pandit for their support during AFM measurements. We would also like to acknowledge CIF, IIT Guwahati, and SAIF, NEHU Shillong, for providing Raman and TEM facility, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarathi Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowal, A.C., Talukdar, H. & Kundu, S. Preparation, characterization and electrical behaviors of PEDOT:PSS-Au/Ag nanocomposite thin films: an ecofriendly approach. Polym. Bull. 76, 5233–5251 (2019). https://doi.org/10.1007/s00289-018-2652-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2652-z

Keywords

Navigation