Skip to main content
Log in

Synthesis and characterization of polyurethane–organoclay nanocomposites based on renewable castor oil polyols

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, castor oil-based polyurethanes–organoclay (COPUs-Cloisite 30B) nanocomposites are synthesized by mixing polypropylene glycol polyol and dehydrated castor oil (15 %), enforced with C30B nanofillers, at different weight percentages. The physico-chemical behaviors were evaluated by Fourier transform infrared spectroscopy, Fourier scanning electron microscopy, scanning electron microscopy and X-ray diffraction. Thermal stability was found improved up to ~30 °C in the sample with 5 wt% of C30B. Tensile properties depicted an improvement of ~240 % in tensile strength and decrease of ~30 % in elongation with 5 wt% organoclay, respectively. Improved physico-chemical properties of COPUs-C30B signify the usage of COPUs-C30B in the industrial and commercial applications, i.e. coatings, adhesives and automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stefan O (2013) Effects of guar gum content on structure and properties of multi-crosslinked polyurethane composite films. J Compos Elsevier 44:76–83

  2. Yusoh K, Jin J, Song M (2010) Subsurface mechanical properties of polyurethane/organoclay nanocomposite thin films studied by nanoindentation. J Prog Org Coat Elsevier 67:220–224

  3. Akintayo CO, Akintayo ET, Ziegler T, Babalola BM (2013) Newly developed epoxy-polyol and epoxy-polyurethane from renewable resources. Br J Appl Sci Technol 3:984–993

    Article  Google Scholar 

  4. Nihal S, Emel O (2007) Thermal characteristics of polyurethane foams incorporated with phase change materials. J Thermochim Acta Sci Direct 454:90–98

    Article  Google Scholar 

  5. Judit EP, Elizabeth AF, Goy TL, Sara EP, Michelle ME, Steven PS, Marta P, Miros F, Piotr P, Krystal L (2010) A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. J Biomater Sci Direct 31:2477–2488

    Google Scholar 

  6. Bela PJ, Kristof B, Zsuzsa T, Jozsef V, Lajos B, Stephan H, Tamas D, Bela P (2008) Nanophase separation in segmented polyurethane elastomers: effect of specific interactions on structure and properties. J Eur Polym Sci Direct 44:2431–2438

    Article  Google Scholar 

  7. Jose MH, Eva M, John CL, Steven SC (2009) Transport properties in polyurethane/clay nanocomposites as barrier materials: effect of processing conditions. J Membr Sci 337:208–214

    Article  Google Scholar 

  8. Sponton M, Casisa N, Mazo P, Raud B, Simonetta A, Rios L, Estenoz D (2013) Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. J Int Biodeterior Biodegrad 85:85–94

    Article  CAS  Google Scholar 

  9. Laurent F, Houria K, Mylene S, Olivia G, Christine JD, Vincent L, Jean JR (2013) The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. J Prog Polym Sci 38:932–962

    Article  Google Scholar 

  10. Xiaohua K, Guoguang L, Hong Q, Jonathan MC (2013) Preparation and characterization of high-solid polyurethane coating systems based on vegetable oil derived polyols. J Prog Org Coat 76:1151–1160

    Article  Google Scholar 

  11. Shida M, Ping W, Zhiguo S, Songping Z (2014) Vegetable-oil-based polymers as future polymeric biomaterials. J Acta Biomater 10:1692–1704

  12. Eid AI, Motawie AM, Sadek EM (2011) Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. J Egypt J Pet 20:1–8

    Article  Google Scholar 

  13. Hadi B, Hamid Y, Shahram MA, Mohammad AS, Seyyed NE (2013) Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. J Mater Sci Eng 33:153–164

    Article  Google Scholar 

  14. Hamid Y, Pejman HT (2006) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol). J Polym Degrad Stabil 92:480–489

    Google Scholar 

  15. Ivan S.R, Zoran D.B, Berta H, Katalin M.S, Jaroslava B.S, Nada L, Miodrag K (2012) Thermal stability of polyurethane materials based on castor oil as polyol component. J Therm Anal Calorim. doi:10.1007/s10973-012-2497-x

  16. Xiaohua K, Guoguang L, Jonathan MC (2011) Characterization of canola oil based polyurethane wood adhesives. Int J Adhes Adhes 31:559–564

    Article  Google Scholar 

  17. Xiaohua K, Guoguang L, Jonathan MC (2012) Novel polyurethane produced from canola oil based poly (ether ester) polyols: synthesis characterization and properties. Eur Polym J 48:2097–2106

    Article  Google Scholar 

  18. Guan ST, Takashi N, Hyoe H, Tatsuko H (2011) Polyurethane composites derived from glycerol and molasses polyols filled with oil palm empty fruit bunches studied by TG and DMA. J Thermochim Acta 525:190–196

    Article  Google Scholar 

  19. Khoon PA, Choy SL, Sit FC, Cheng HC (2013) Synthesis of palm oil-based polyester polyol for polyurethane adhesive production. J Appl Polym Sci. doi:10.1002/app.39967

  20. Hatice M, Michael AR (2010) Castor oil as renewable resource for the chemical industry. Eur J Lipid Sci Technol 112:10–30

    Article  Google Scholar 

  21. Corcuera MA, Rueda L, Fernandez BA, Arbelaiz A, Marieta C, Mondragon I, Eceiza A (2010) Microstructure and properties of polyurethanes derived from castor oil. J Polym Degrad Stabil 95:2175–2184

    Article  CAS  Google Scholar 

  22. Eleni P, Milena GM, Stephen C (2008) Reaction kinetic of polyurethane formation using a comercial oligomeric diisocyanate resin studied by calorimetric and rheological methods. J Macromol Chem Phys 209:2302–2311

    Article  Google Scholar 

  23. Hablot E, Zheng D, Bouquey M, Averous L (2008) Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. J Macromol Mater Eng Polym Sci Technol Gen 293:922–929

    Article  CAS  Google Scholar 

  24. Ayesha K, Sonia Z, Muhammad IS (2013) High performance segmented polyurethanes derived from a new aromatic diisocyanate and polyol. J Polym Degrad Stabil 98:368–376

    Article  Google Scholar 

  25. Caoa X, Lee LJ, Widyab T, Macosko C (2005) Polyurethane/clay nanocomposites foams: processing, structure and properties. J Polym 46:775–783

    Article  Google Scholar 

  26. Ling Z (2008) Structure-property relationship of polyurethane flexible foam made from natural oil polyols, PhD Thesis. Doctor of philosophy in chemical engineering and material science, University of Minnesota

  27. Thouzeau C, Henneuse C, Sclavons M, Devaux J, Soulestin J, Stoclet G (2013) Emission of volatile organic compounds during processing and use of organoclay based nanocomposites. J Polym Degrad Stabil 98:557–565

    Article  CAS  Google Scholar 

  28. Gautam D, Ranjan DK, Harekrishna D, Alok KB, Niranjan K (2013) Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites. J Prog Org Coat 76:1103–1111

    Article  Google Scholar 

  29. Kaushik A, Dheeraj A, Vipin S (2011) Synthesis and characterization of organically modified clay/castor oil based chain extended polyurethane nanocomposites. J Compos 42:1534–1541

    Article  Google Scholar 

  30. Krushna CP, Nayak PL (2012) Synthesis and characterization of polyurethane nanocomposite from castor oil-hexamethylene diisocyanate (HMDI). J Pelagia Res Libr Adv Appl Sci Res 5:3045–3052

    Google Scholar 

  31. Swagatika M, Nayak PL, Guru B, Nanda CP (2010) Synthesis and characterization of polyurethane nanocomposites for biomedical applications, International Conference on Environment. J Energy Dev (from Stockholm to Copenhagen and beyond) 2:403–412

  32. dos Santos DJ, Tavares LB, Batalha GF (2012) Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. J Achiev Mater Manuf Eng 54:211–217

    Google Scholar 

  33. Jose M, Cervantes U, Juan V, Cauich R, Humberto VT, Luis F, Garfias M, Donald RP (2009) Thermal degradation of commercially available organoclays studied by TGA-FTIR. J Polym Degrad Stabil 457:92–102

    Google Scholar 

  34. Cervantes U, Cauich RJ, Vzquez TH, Garfias ML, Paul DR (2007) Thermal degradation of commercially available organoclays studied by TGA-FTIR. J Thermochim Acta 457:92–102

    Article  Google Scholar 

  35. Saha C, Chaki TK, Singha NK (2013) Synthesis and characterization of elastomeric polyurethane and PU/clay nanocomposites based on an aliphatic diisocyanate. J Appl Polym Sci. doi:10.1002/APP.39534 (1–7)

  36. Mohanty D, Biswal SK, Palve YP, Nayak PL (2012) Synthesis and characterization of polylactic acid/cloisite 30B (MMT) nanocomposite for controlled release of anticancer drug curcumin. Int J Pharm Res Allied Sci 1(4):63–70

    CAS  Google Scholar 

  37. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. J Compos Sci Technol 65:2344–2363

    Article  CAS  Google Scholar 

  38. Semenzato S, Lorenzetti A, Modesti M, Ugel E, Hrelja D, Besco S, Michelin RA, Sassi A, Facchin G, Zorzi F, Bertan R (2009) A novel phosphorus polyurethane foam/montmorillonite nanocomposite: preparation, characterization and thermal behavior. J Appl Clay Sci 44:35–42

    Article  CAS  Google Scholar 

  39. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. J Mater Sci Eng 53:173–197

    Google Scholar 

  40. Dimitry OIH, Ibrahim ZA, Ismail EA, Saad LG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813

    Article  CAS  Google Scholar 

  41. Thuc CN, Cao HT, Nguyen DM, Tran MA, Duclaux L, Grillet AC, Thuc HH (2014) Preparation and characterization of polyurethane nanocomposites using vietnamese montmorillonite modified by polyol surfactants. J Nanomater. ID 302735, 1–11

  42. Zhong BX, Wei WK, Ming XZ, Mao P (2010) Effect of surface modification of montmorillonite on the properties of rigid polyurethane foam composites. Chin J Polym Sci 45:1065–1073

    Google Scholar 

  43. Dave VJ, Hasmukh SP (2013) Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. J Saudi Chem Soc Prod Hosting Elsevier. doi:10.1016/j.jscs.2013.08.001 (1–6)

  44. Pratondo E, Adityo WH, Eva ON (2012) Sumarno effects of chain extender to the structure of castor oil-based polyurethane foam. In: Proceeding of International Conference on Chemical and Material Engineering. ISBN: 978-602-097-281-7

  45. Leszczynska A, Njugunab J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties, Part II: thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. J Thermochim Acta 454:1–22

    Article  CAS  Google Scholar 

  46. Wang TL, Hsieh TH (1997) Effect of polyol structure and molecular weight on the thermal stability of segmented poly (urethane ureas). J Polym Degrad Stabil J Sci Direct 55:95–102

    Article  CAS  Google Scholar 

  47. Coutinho FMB, Delpech FMC (2000) Degradation profile of films cast from aqueous polyurethane dispersions. J Poly Degrad Stabil Sci Direct 70:49–57

    Article  CAS  Google Scholar 

  48. Silva GR, Armando SC, Francine BC, Eliane A, Rodrigo LO (2010) Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. J Polym Degrad Stabil Sci Direct 95:491–499

    Article  Google Scholar 

  49. Petrovic ZS (2010) Polymers from biological oils, petrovic, polymers from biological oils contemporary materials. Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas, USA I-1:39–50

  50. Chen YW, Lee YK, Chen YT, Wu JC (2007) High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process. J Polym Sci Direct 48:2969–2979

    Google Scholar 

  51. Heidarian M, Shishesaz MR, Kassiriha SM, Nematollahi M (2011) Study on the effect of ultrasonication time on transport properties of polyurethane/organoclay nanocomposite coatings. J Coat Technol 8:265–274

    Article  CAS  Google Scholar 

  52. Andrea D, Alessandro P, Amabile P (2011) Effect of the polymer–filler interaction on the thermo-mechanical response of polyurethane–clay nanocomposites from blocked prepolymer. J Reinf Plast Compos 30:325–335

    Article  Google Scholar 

  53. Chih WC, Ting KH, Wang YC, Bryan GA, Jiang JL (2013) Intercalation strategies in clay/polymer hybrids. J Prog Polym Sci. Available online 13 July: 1–43

  54. Abareshi M, Zebarjad SM, Goharshadi EK (2009) Crystallinity behavior of MDPE-clay nanocomposites fabricated using ball milling method. J Compos Mater 43:2821–2830. doi:10.1177/0021998309345307

    Article  CAS  Google Scholar 

  55. Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb J Technol 49(5):472–477

    Article  CAS  Google Scholar 

  56. Nasir M, Arun G, Mohammad D, Hossen B, Gek KC, Mohd A (2014) Laccase application in medium density fibreboard to prepare a bio-composite. J R Soc Chem 4:11520–11527. doi:10.1039/c3ra40593a

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial support (Research Grant: RDU 130329) from University Malaysia Pahang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Alaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaa, M.A., Yusoh, K. & Hasany, S.F. Synthesis and characterization of polyurethane–organoclay nanocomposites based on renewable castor oil polyols. Polym. Bull. 72, 1–17 (2015). https://doi.org/10.1007/s00289-014-1255-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1255-6

Keywords

Navigation