Skip to main content
Log in

Design and synthesis of polymeric membranes using water-soluble pore formers: an overview

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Membrane technologies have been at the heart of research since last few decades with latest improvement in both fabrication and analytical tools. Porous polymeric membranes have gained much attention in this perspective for their utilization in a variety of fields. This review article is mainly concerned with reporting the research work being conducted so far in the direction of fabricating porous polymer membranes. In this context, various additives used to design porous polymer membranes resulting in well-controlled and broad variety of morphologies are being discussed. However, the emphasis of this review is on the use of various additives mainly different water-soluble pore formers (WSP) in polymeric membranes such as PVP, PEG and PAA. The effect of these WSP on pure water flux, hydrophilicity, fouling, mechanical strength and applications of porous membranes in various fields has also been explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from [125] with permission from [ACS]

Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BFA:

Body-forming agent

BSA:

Bovine serum albumin

HPMA:

N-(2-hydroxypropyl) meth acrylamide

MD:

Membrane distillation

MF:

Microfiltration

NOM:

Natural organic matter

PAA:

Polyacrylic acid

PAM:

Polyacrylamide

PEG:

Poly(ethylene glycol)

PEEK:

Polyetherketone

PEGDA:

Poly(ethylene glycol) diacrylate

PEGDME:

Poly(ethylene glycol) dimethyl ether

PES:

Polyether sulfone

PF:

Pore formers

PFA:

Pore-forming agent

PI:

Polyimide

PIM:

Phase inversion method

PP:

Polypropylene

PSf:

Polysulfone

PTFE:

Polytetrafluoroethylene

PVDF:

Poly(vinylidene fluoride)

PVP:

Poly(vinyl pyrrolidone)

RO:

Reverse osmosis

TNF:

Tumor necrosis factor

UF:

Ultrafiltration

WSP:

Water-soluble pore formers

References

  1. McLeary E, Jansen J, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90(1):198–220

    Article  CAS  Google Scholar 

  2. Khulbe KC, Feng C, Matsuura T (2007) Synthetic polymeric membranes: characterization by atomic force microscopy. Springer, Berlin

    Google Scholar 

  3. Feng C, Khulbe KC, Matsuura T, Ismail AF (2013) Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications. Sep Purif Technol 111:43–71

    Article  CAS  Google Scholar 

  4. Gin DL, Noble RD (2011) Designing the next generation of chemical separation membranes. Science 332(6030):674–676

    Article  CAS  PubMed  Google Scholar 

  5. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471

    Article  CAS  PubMed  Google Scholar 

  6. Ozdemir SS, Buonomenna MG, Drioli E (2006) Catalytic polymeric membranes: preparation and application. Appl Catal A Gen 307(2):167–183

    Article  CAS  Google Scholar 

  7. Cheang B, Zydney AL (2004) A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membr Sci 231(1):159–167

    Article  CAS  Google Scholar 

  8. Metsämuuronen S, Nyström M (2009) Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J Membr Sci 337(1):248–256

    Article  CAS  Google Scholar 

  9. Saljoughi E, Mousavi SM (2012) Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Sep Purif Technol 90:22–30

    Article  CAS  Google Scholar 

  10. Ahmad A, Abdulkarim A, Ooi B, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267

    Article  CAS  Google Scholar 

  11. Lohokare H, Muthu M, Agarwal G, Kharul U (2008) Effective arsenic removal using polyacrylonitrile-based ultrafiltration (UF) membrane. J Membr Sci 320(1):159–166

    Article  CAS  Google Scholar 

  12. Guillen GR, Pan Y, Li M, Hoek EM (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817

    Article  CAS  Google Scholar 

  13. Yuliwati E, Ismail AF, Matsuura T, Kassim MA, Abdullah MS (2011) Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment. Desalination 283:214–220

    Article  CAS  Google Scholar 

  14. Liu F, Hashim NA, Liu Y, Abed MM, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1):1–27

    Article  CAS  Google Scholar 

  15. Jeazet HBT, Janiak C (2014) Metal-organic frameworks in mixed-matrix membranes. In: MacGillivray LR, Lukehart C (eds) Metal-organic framework materials. Wiley, Chichester, pp 1–15

    Google Scholar 

  16. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95

    Article  CAS  Google Scholar 

  17. Apel PY, Bashevoy VV, Blonskaya IV, Lizunov NE, Orelovitch OL, Trautmann C (2016) Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Phys Chem Chem Phys 18(36):25421–25433

    Article  CAS  PubMed  Google Scholar 

  18. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375(1):284–294

    Article  CAS  Google Scholar 

  19. Fan X, Su Y, Zhao X, Li Y, Zhang R, Zhao J, Jiang Z, Zhu J, Ma Y, Liu Y (2014) Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J Membr Sci 464:100–109

    Article  CAS  Google Scholar 

  20. Sinha M, Purkait M (2013) Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. J Membr Sci 437:7–16

    Article  CAS  Google Scholar 

  21. Vandezande P, Gevers LE, Vankelecom IF (2008) Solvent resistant nanofiltration: separating on a molecular level. Chem Soc Rev 37(2):365–405

    Article  CAS  PubMed  Google Scholar 

  22. Pezeshk N, Rana D, Narbaitz R, Matsuura T (2012) Novel modified PVDF ultrafiltration flat-sheet membranes. J Membr Sci 389:280–286

    Article  CAS  Google Scholar 

  23. Kim E-S, Yu Q, Deng B (2011) Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Appl Surf Sci 257(23):9863–9871

    Article  CAS  Google Scholar 

  24. Hilal N, Ogunbiyi OO, Miles NJ, Nigmatullin R (2005) Methods employed for control of fouling in MF and UF membranes: a comprehensive review. Sep Sci Technol 40(10):1957–2005

    Article  CAS  Google Scholar 

  25. Yared I, Wang S-L, Wang M-J (2014) Effects of oxygen plasma and dopamine coating on poly (vinylidene fluoride) microfiltration membrane for the resistance to protein fouling. IEEE Trans Plasma Sci 42(12):3847–3857

    Article  CAS  Google Scholar 

  26. Li X, Cao Y, Kang G, Yu H, Jie X, Yuan Q (2014) Surface modification of polyamide nanofiltration membrane by grafting zwitterionic polymers to improve the antifouling property. J Appl Polym Sci. https://doi.org/10.1002/app.41144

    Article  Google Scholar 

  27. Meng H, Cheng Q, Wang H, Li C (2014) Improving anti-protein-fouling property of polyacrylonitrile ultrafiltration membrane by grafting sulfobetaine zwitterions. J Chem 2014:304972-1–304972-9

    Google Scholar 

  28. Gu J-S, Yu H-Y, Huang L, Tang Z-Q, Li W, Zhou J, Yan M-G, Wei X-W (2009) Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR. J Membr Sci 326(1):145–152

    Article  CAS  Google Scholar 

  29. Vázquez M, de Lara R, Galán P, Benavente J (2005) Modification of cellulosic membranes by γ-radiation: effect on electrochemical parameters and protein adsorption. Colloids Surf A Physicochem Eng Asp 270:245–251

    Article  CAS  Google Scholar 

  30. Moses KJ, Cohen Y (2014) Wettability of terminally anchored polymer brush layers on a polyamide surface. J Colloid Interface Sci 436:286–295

    Article  CAS  Google Scholar 

  31. Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, Hedrick J, Yang YY (2014) Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Adv Mater 26(43):7346–7351

    Article  CAS  PubMed  Google Scholar 

  32. Zhou R, Ren P-F, Yang H-C, Xu Z-K (2014) Fabrication of antifouling membrane surface by poly (sulfobetaine methacrylate)/polydopamine co-deposition. J Membr Sci 466:18–25

    Article  CAS  Google Scholar 

  33. Miller DJ, Paul DR, Freeman BD (2014) An improved method for surface modification of porous water purification membranes. Polymer 55(6):1375–1383

    Article  CAS  Google Scholar 

  34. Miller DJ, Kasemset S, Wang L, Paul DR, Freeman BD (2014) Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes. J Membr Sci 452:171–183

    Article  CAS  Google Scholar 

  35. Van Wagner EM, Sagle AC, Sharma MM, La Y-H, Freeman BD (2011) Surface modification of commercial polyamide desalination membranes using poly (ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Membr Sci 367(1):273–287

    Article  CAS  Google Scholar 

  36. Zhao W, Su Y, Li C, Shi Q, Ning X, Jiang Z (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318(1):405–412

    Article  CAS  Google Scholar 

  37. Costacurta S, Biasetto L, Pippel E, Woltersdorf J, Colombo P (2007) Hierarchical porosity components by infiltration of a ceramic foam. J Am Ceram Soc 90(7):2172–2177

    Article  CAS  Google Scholar 

  38. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Sun X, Wen C, Lu H, Wang Z (2013) Preparation and characterization of poly (vinylidene fluoride)/TiO2 hybrid membranes. Environ Sci Catal Sci Technol 7(4):492–502

    CAS  Google Scholar 

  40. Gregorová E, Živcová Z, Pabst W, Kunertová A (2007) Starch-processed ceramics with porosity or pore size gradients. In: Proceedings of the 10th ECerS conference. Göller Verlag, Baden-Baden, pp 439–446

  41. Iulianelli A, Basile A (2011) Hydrogen production from ethanol via inorganic membrane reactors technology: a review. Catal Sci Technol 1(3):366–379

    Article  CAS  Google Scholar 

  42. Skluzacek JM, Tejedor MI, Anderson MA (2007) NaCl rejection by an inorganic nanofiltration membrane in relation to its central pore potential. J Membr Sci 289(1):32–39

    Article  CAS  Google Scholar 

  43. Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5(8):8075–8109

    Article  CAS  Google Scholar 

  44. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991

    Article  CAS  Google Scholar 

  45. Dixita S, Palb S (2016) Recent advanced technologies in the processing of hybrid reinforced polymers for applications of membranes. Polym Polym Compos 24:(4)

    Google Scholar 

  46. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water ResTechnol 2(1):17–42

    Article  CAS  Google Scholar 

  47. Sandu T, Sarbu A, Damian CM, Patroi D, Iordache TV, Budinova T, Tsyntsarski B, Yardim MF, Sirkecioglu A (2015) Functionalized bicomponent polymer membranes as supports for covalent immobilization of enzymes. React Funct Polym 96:5–13

    Article  CAS  Google Scholar 

  48. Berbar Y, Amara M, Ammi-Said A, Yuan S, Van der Bruggen B (2017) New method for silica embedding on a PES membrane surface via in situ sol gel process and immobilization in a polyamide thin film composite. J Environ Chem Eng 5(4):3604–3615

    Article  CAS  Google Scholar 

  49. Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2018) Membrane-based separation of potential emerging pollutants. Sep Purif Technol 210:850–866

    Article  CAS  Google Scholar 

  50. Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Nicolae CA, Pascu M, Ion-Ebrasu D, Raditoiu V (2018) Treatment of Crystal violet from synthetic solution using membranes doped with natural fruit extract. Clean Soil Air Water 46:1700413

    Article  CAS  Google Scholar 

  51. Caprarescu S, Miron AR, Purcar V, Radu A-L, Sarbu A, Ion-Ebrasu D, Atanase L-I, Ghiurea M (2016) Efficient removal of Indigo Carmine dye by a separation process. Water Sci Technol 74(10):2462–2473

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka Y (2012) Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination. Desalination 301:10–25

    Article  CAS  Google Scholar 

  53. Lee S-Y, Pereira BP, Yusof N, Selvaratnam L, Yu Z, Abbas A, Kamarul T (2009) Unconfined compression properties of a porous poly (vinyl alcohol)–chitosan-based hydrogel after hydration. Acta Biomater 5(6):1919–1925

    Article  CAS  PubMed  Google Scholar 

  54. Lei J, Wang L, Zhang J (2010) Ratiometric pH sensor based on mesoporous silica nanoparticles and Förster resonance energy transfer. Chem Commun 46(44):8445–8447

    Article  CAS  Google Scholar 

  55. Pal N, Bhaumik A (2013) Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 189:21–41

    Article  CAS  PubMed  Google Scholar 

  56. Huang J, Zhou X, Lamprou A, Maya F, Svec F, Turner SR (2015) Nanoporous polymers from cross-Linked polymer precursors via tert-butyl group deprotection and their carbon dioxide capture properties. Chem Mater 27(21):7388–7394

    Article  CAS  Google Scholar 

  57. Hoshino Y, Arata Y, Yonamine Y, Lee S-H, Yamasaki A, Tsuhara R, Yano K, Shea KJ, Miura Y (2015) Preparation of nanogel-immobilized porous gel beads for affinity separation of proteins: fusion of nano and micro gel materials. Polym J 47(2):220

    Article  CAS  Google Scholar 

  58. Mines PD, Byun J, Hwang Y, Patel H, Andersen HR, Yavuz C (2016) Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal. J Mater Chem A 4(2):632–639

    Article  CAS  Google Scholar 

  59. Rao KV, Haldar R, Kulkarni C, Maji TK, George SJ (2012) Perylene based porous polyimides: tunable, high surface area with tetrahedral and pyramidal monomers. Chem Mater 24(6):969–971

    Article  CAS  Google Scholar 

  60. Das T, Paira TK, Biswas M, Mandal TK (2015) Ionic liquid cross-linked multifunctional cationic polymer nanobeads via dispersion polymerization: applications in anion exchange, templates for palladium, and fluorescent carbon nanoparticles. J Phy Chem C 119(8):4324–4332

    Article  CAS  Google Scholar 

  61. Philippova O, Barabanova A, Molchanov V, Khokhlov A (2011) Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur Polym J 47(4):542–559

    Article  CAS  Google Scholar 

  62. Mane S, Ponrathnam S, Chavan N (2015) Role of interfacial tension of solvating diluents and hydrophilic–hydrophobic cross-Linkers in hyper-cross-linked solid supports. Ind Eng Chem Res 54(27):6893–6901

    Article  CAS  Google Scholar 

  63. Mane S, Ponrathnam S, Chavan N (2015) Effect of chemical cross-linking on properties of polymer microbeads: a review. Can Chem Trans 3(4):473–485

    CAS  Google Scholar 

  64. Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Phram Phram Sci 4(5):1–7

    CAS  Google Scholar 

  65. Mohamed MH, Wilson LD (2012) Porous copolymer resins: tuning pore structure and surface area with non reactive porogens. Nanomater 2(2):163–186

    Article  CAS  Google Scholar 

  66. Sosa DY, Guillén L, Saade H, Mendizábal E, Puig JE, López RG (2014) Effect of monomer dosing rate in the preparation of mesoporous polystyrene nanoparticles by semicontinuous heterophase polymerization. Molecules 20(1):52–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113(7):4812–4836

    Article  CAS  PubMed  Google Scholar 

  68. Bhattacharya S, Das AV, Mallya KB, Ahmad I (2008) Ciliary neurotrophic factor-mediated signaling regulates neuronal versus glial differentiation of retinal stem cells/progenitors by concentration-dependent recruitment of mitogen-activated protein kinase and janus kinase-signal transducer and activator of transcription pathways in conjunction with notch signaling. Stem Cells 26(10):2611–2624

    Article  CAS  PubMed  Google Scholar 

  69. Kadajji VG, Betageri GV (2011) Water soluble polymers for pharmaceutical applications. Polymer 3(4):1972–2009

    Article  CAS  Google Scholar 

  70. Alexander JV, Neely JW, Grulke EA (2014) Effect of chemical functionalization on the mechanical properties of polypropylene hollow fiber membranes. J Polym Sci Part B Polym Phys 52(20):1366–1373

    Article  CAS  Google Scholar 

  71. Sun P, Zheng F, Wang K, Zhong M, Wu D, Zhu H (2014) Electro-and magneto-modulated ion transport through graphene oxide membranes. Sci Rep 4:6798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nady N, Franssen MC, Zuilhof H, Eldin MSM, Boom R, Schroën K (2011) Modification methods for poly (arylsulfone) membranes: a mini-review focusing on surface modification. Desalination 275(1):1–9

    Article  CAS  Google Scholar 

  73. Ahmad A, Sarif M, Ismail S (2005) Development of an integrally skinned ultrafiltration membrane for wastewater treatment: effect of different formulations of PSf/NMP/PVP on flux and rejection. Desalination 179(1–3):257–263

    Article  CAS  Google Scholar 

  74. Ismail AF, Hassan AR (2007) Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Sep Sci Technol 55(1):98–109

    CAS  Google Scholar 

  75. Hwang JR, Sefton MV (1995) The effects of polymer concentration and a pore-forming agent (PVP) on HEMA-MMA microcapsule structure and permeability. J Membr Sci 108(3):257–268

    Article  CAS  Google Scholar 

  76. Fontananova E, Jansen JC, Cristiano A, Curcio E, Drioli E (2006) Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192(1):190–197

    Article  CAS  Google Scholar 

  77. Mansourizadeh A, Ismail AF (2009) Hollow fiber gas–liquid membrane contactors for acid gas capture: a review. J Hazard Mater 171(1):38–53

    Article  CAS  PubMed  Google Scholar 

  78. Jung B, Yoon JK, Kim B, Rhee H-W (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243(1):45–57

    Article  CAS  Google Scholar 

  79. Akthakul A, Salinaro RF, Mayes AM (2004) Antifouling polymer membranes with subnanometer size selectivity. Macromolecules 37(20):7663–7668

    Article  CAS  Google Scholar 

  80. Wang H, Yu T, Zhao C, Du Q (2009) Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym 10(1):1–5

    Article  CAS  Google Scholar 

  81. Rahimpour A, Madaeni S (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305(1):299–312

    Article  CAS  Google Scholar 

  82. Idris A, Zain NM, Noordin M (2007) Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 207(1–3):324–339

    Article  CAS  Google Scholar 

  83. Elbert DL (2011) Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater 7(1):31–56

    Article  CAS  PubMed  Google Scholar 

  84. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482

    Article  CAS  Google Scholar 

  85. Wajid AS, Das S, Irin F, Ahmed HT, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50(2):526–534

    Article  CAS  Google Scholar 

  86. Yang Q, Wang KY, Chung T-S (2009) Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production. Environ Sci Technol 43(8):2800–2805

    Article  CAS  PubMed  Google Scholar 

  87. Liu X, Xu Y, Wu Z, Chen H (2013) Poly (N-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromol Biosci 13(2):147–154

    Article  CAS  PubMed  Google Scholar 

  88. Yeow M, Liu Y, Li K (2005) Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J Membr Sci 258(1):16–22

    Article  CAS  Google Scholar 

  89. Arthanareeswaran G, Thanikaivelan P, Raguime JA, Raajenthiren M, Mohan D (2007) Metal ion separation and protein removal from aqueous solutions using modified cellulose acetate membranes: role of polymeric additives. Sep Purif Technol 55(1):8–15

    Article  CAS  Google Scholar 

  90. Saljoughi E, Amirilargani M, Mohammadi T (2010) Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes. Desalination 262(1):72–78

    Article  CAS  Google Scholar 

  91. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  PubMed  Google Scholar 

  92. Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602

    Article  CAS  Google Scholar 

  93. Karimi A, Navidbakhsh M, Yousefi H (2014) Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 105(4):404–408

    Article  CAS  Google Scholar 

  94. Setiawan L, Wang R, Li K, Fane AG (2012) Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer. J Membr Sci 394:80–88

    Article  CAS  Google Scholar 

  95. Kosmala A, Fitzgerald M, Moore E, Stam F (2016) Evaluation of a gelatin modified poly (ɛ-caprolactone) film as a scaffold for lung disease. Anal Lett 50:219–232

    Article  CAS  Google Scholar 

  96. Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A 88(2):391–395

    Article  CAS  Google Scholar 

  97. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B Appl Biomater 100(5):1451–1457

    Article  CAS  PubMed  Google Scholar 

  98. Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Prog Polym Sci 32(7):669–697

    Article  CAS  Google Scholar 

  99. Limpan N, Prodpran T, Benjakul S, Prasarpran S (2012) Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll 29(1):226–233

    Article  CAS  Google Scholar 

  100. Tang Y, Zhou D, Zhang J (2013) Novel polyvinyl alcohol/styrene butadiene rubber latex/carboxymethyl cellulose nanocomposites reinforced with modified halloysite nanotubes. J Nanomater 2013:128

    Google Scholar 

  101. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud 19(2):255–266

    Google Scholar 

  102. Jie Q, Lin K, Zhong J, Shi Y, Li Q, Chang J, Wang R (2004) Preparation of macroporous sol-gel bioglass using PVA particles as pore former. J Sol–Gel Sci Technol 30(1):49–61

    Article  CAS  Google Scholar 

  103. Rambo CR, Sieber H (2005) Novel synthetic route to biomorphic Al2O3 ceramics. Adv Mater 17(8):1088–1091

    Article  CAS  Google Scholar 

  104. Liu C, Bai R (2006) Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J Membr Sci 284(1):313–322

    Article  CAS  Google Scholar 

  105. Palmer D, Vuong H, Levina M, Rajabi-Siahboomi AR (2007) The influence of hydrophilic pore formers on dipyridamole release from aqueous ethylcellulose film-coated pellets. In: AAPS annual meeting, 2007

  106. Wang Z, Li M, Cai Y, Wang J, Wang S (2007) Novel CO2 selectively permeating membranes containing PETEDA dendrimer. J Membr Sci 290(1):250–258

    Article  CAS  Google Scholar 

  107. Saeed M, Rafiq S, Bergersen LH, Deng L (2017) Tailoring of water swollen PVA membrane for hosting carriers in CO2 facilitated transport membranes. Sep Purif Technol 179:550–560

    Article  CAS  Google Scholar 

  108. Saunders G, MacCreath B (2010) Biodegradable polymers-analysis of biodegradable polymers by GPC/SEC. Application Compendium. Agilent Technologies

  109. Chaibva FA, Walker RB (2012) The use of response surface methodology for the formulation and optimization of salbutamol sulfate hydrophilic matrix sustained release tablets. Pharma Dev Technol 17(5):594–606

    Article  CAS  Google Scholar 

  110. Li P, Liu L, Ding L, Lv F, Zhang Y (2016) Thermal and dielectric properties of electrospun fiber membranes from polyimides with different structural units. J Appl Polym Sci 133(9):1–7

    CAS  Google Scholar 

  111. M’Bareck CO, Nguyen QT, Alexandre S, Zimmerlin I (2006) Fabrication of ion-exchange ultrafiltration membranes for water treatment: I. Semi-interpenetrating polymer networks of polysulfone and poly (acrylic acid). J Membr Sci 278(1):10–18

    Article  CAS  Google Scholar 

  112. He Y, Bagley DM, Leung KT, Liss SN, Liao B-Q (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30(4):817–858

    Article  CAS  PubMed  Google Scholar 

  113. Chapman PD, Oliveira T, Livingston AG, Li K (2008) Membranes for the dehydration of solvents by pervaporation. J Membr Sci 318(1):5–37

    Article  CAS  Google Scholar 

  114. Gohil J, Bhattacharya A, Ray P (2006) Studies on the crosslinking of poly (vinyl alcohol). J Polym Res 13(2):161–169

    Article  CAS  Google Scholar 

  115. Bhattacharyya D, Lewis SR, Datta S (2015) Chemical processing cell with nanostructured membranes. U.S. Patent No. 9,174,173

  116. Sairam M, Babu VR, Naidu BVK, Aminabhavi TM (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320(1):131–136

    Article  CAS  PubMed  Google Scholar 

  117. Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells. Angew Chemie Intel Edit 46(13):2224–2227

    Article  CAS  Google Scholar 

  118. Patton JN, Palmer AF (2006) Physical properties of hemoglobin–poly (acrylamide) hydrogel-based oxygen carriers: effect of reaction pH. Langmuir 22(5):2212–2221

    Article  CAS  PubMed  Google Scholar 

  119. Yang T-H (2008) Recent applications of polyacrylamide as biomaterials. Rec Patents Mater Sci 1(1):29–40

    Article  CAS  Google Scholar 

  120. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Gao B, Lu L, Yue Q, Wang Q, Jia Y (2010) Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process. J Pet Sci Eng 74(1):14–19

    Article  CAS  Google Scholar 

  122. Zhang H, Zhong Z, Xing W (2013) Application of ceramic membranes in the treatment of oilfield-produced water: effects of polyacrylamide and inorganic salts. Desalination 309:84–90

    Article  CAS  Google Scholar 

  123. Zhao X, Liu L, Wang Y, Dai H, Wang D, Cai H (2008) Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding. Sep Purif Technol 62(1):199–204

    Article  CAS  Google Scholar 

  124. Wang X, Wang Z, Zhou Y, Xi X, Li W, Yang L, Wang X (2011) Study of the contribution of the main pollutants in the oilfield polymer-flooding wastewater to the critical flux. Desalination 273(2):375–385

    Article  CAS  Google Scholar 

  125. Fakhrúl-Razi A, Pendashteh A, Abidin ZZ, Abdullah LC, Biak DRA, Madaeni SS (2010) Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Biores Technol 101(18):6942–6949

    Article  CAS  Google Scholar 

  126. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41(11):2301–2324

    Article  CAS  PubMed  Google Scholar 

  127. El-Reash YA, Abdelghany A, Elrazak AA (2016) Removal and separation of Cu (II) from aqueous solutions using nano-silver chitosan/polyacrylamide membranes. Int J Biol Macromol 86:789–798

    Article  CAS  PubMed  Google Scholar 

  128. Nasser II, Algieri C, Garofalo A, Drioli E, Ahmed C, Donato L (2016) Hybrid imprinted membranes for selective recognition of quercetin. Sep Purif Technol 163:331–340

    Article  CAS  Google Scholar 

  129. Akbari A, Abbaspour VR, Rostami SMM (2016) Tabas coal preparation plant wastewater treatment with membrane technology. Water Sci Technol 74(2):333–342

    Article  CAS  PubMed  Google Scholar 

  130. Zhang W, Liu N, Cao Y, Chen Y, Zhang Q, Lin X, Qu R, Li H, Feng L (2016) Polyacrylamide-polydivinylbenzene decorated membrane for sundry ionic stabilized emulsions separation via a facile solvothermal method. ACS Appl Mater Interfaces 8(33):21816–21823

    Article  CAS  PubMed  Google Scholar 

  131. Du X, Meng J, Xu R, Shi Q, Zhang Y (2015) Polyol-grafted polysulfone membranes for boron removal: effects of the ligand structure. J Membr Sci 476:205–215

    Article  CAS  Google Scholar 

  132. Schöttner S, Schaffrath H-J, Gallei M (2016) Poly (2-hydroxyethyl methacrylate)-based amphiphilic block copolymers for high water flux membranes and ceramic templates. Macromolecules 49(19):7286–7295

    Article  CAS  Google Scholar 

  133. Wang R, Li L, Wang HS, Wang WB, Wang W, Tian Q (2014) The high performance concrete curing agent based on polyacrylic emulsion with hydroxyl monomer HPMA. In: Applied mechanics and materials, 2014. Trans Tech Publ, pp 1126–1129

  134. Liu Z, Du H, Wickramasinghe SR, Qian X (2014) Membrane surface engineering for protein separations: experiments and simulations. Langmuir 30(35):10651–10660

    Article  CAS  PubMed  Google Scholar 

  135. Koziolová E, Machová D, Pola R, Janoušková O, Chytil P, Laga R, Filippov S, Šubr V, Etrych T, Pechar M (2016) Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J Mater Chem B 4(47):7620–7629

    Article  CAS  Google Scholar 

  136. Nuhn L, Barz M, Zentel R (2014) New perspectives of HPMA-based copolymers derived by post-polymerization modification. Macromol Biosci 14(5):607–618

    Article  CAS  PubMed  Google Scholar 

  137. Stangl M, Hemmelmann M, Allmeroth M, Zentel R, Schneider D (2014) A minimal hydrophobicity is needed to employ amphiphilic p (HPMA)-co-p (LMA) random copolymers in membrane research. Biochemistry 53(9):1410–1419

    Article  CAS  PubMed  Google Scholar 

  138. Saljoughi E, Amirilargani M, Mohammadi T (2009) Effect of poly (vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes. J Appl Polym Sci 111(5):2537–2544

    Article  CAS  Google Scholar 

  139. Lin D-J, Chang C-L, Lee C-K, Cheng L-P (2006) Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions. Eur Polym J 42(10):2407–2418

    Article  CAS  Google Scholar 

  140. Wang T, Zhao C, Li P, Li Y, Wang J (2015) Effect of non-solvent additives on the morphology and separation performance of poly (m-phenylene isophthalamide)(PMIA) hollow fiber nanofiltration membrane. Desalination 365:293–307

    Article  CAS  Google Scholar 

  141. Matsuyama H, Maki T, Teramoto M, Kobayashi K (2003) Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method. Sep Sci Technol 38(14):3449–3458

    Article  CAS  Google Scholar 

  142. Chakrabarty B, Ghoshal A, Purkait M (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309(1):209–221

    Article  CAS  Google Scholar 

  143. Gu M, Zhang J, Wang X, Tao H, Ge L (2006) Formation of poly (vinylidene fluoride)(PVDF) membranes via thermally induced phase separation. Desalination 192(1–3):160–167

    Article  CAS  Google Scholar 

  144. Meng S, Mansouri J, Ye Y, Chen V (2014) Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes. Sep Sci Technol 450:48–59

    CAS  Google Scholar 

  145. Peng F, Lu L, Hu C, Wu H, Jiang Z (2005) Significant increase of permeation flux and selectivity of poly (vinyl alcohol) membranes by incorporation of crystalline flake graphite. J Membr Sci 259(1):65–73

    Article  CAS  Google Scholar 

  146. Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, Keinath SE, Dvornic PR (2010) Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci 349(1):421–428

    Article  CAS  Google Scholar 

  147. Jijun F, Lishuang X, Xiaoli W, Shu Z, Xiaoguang T, Xingna Z, Haibing H, Xing T (2011) Nimodipine (NM) tablets with high dissolution containing NM solid dispersions prepared by hot-melt extrusion. Drug Dev Ind Pharm 37(8):934–944

    Article  CAS  PubMed  Google Scholar 

  148. He H, Yang R, Tang X (2010) In vitro and in vivo evaluation of fenofibrate solid dispersion prepared by hot-melt extrusion. Drug Dev Ind Pharm 36(6):681–687

    Article  CAS  PubMed  Google Scholar 

  149. Chokshi RJ, Sandhu HK, Iyer RM, Shah NH, Malick AW, Zia H (2005) Characterization of physico-mechanical properties of indomethacin and polymers to assess their suitability for hot-melt extrusion processs as a means to manufacture solid dispersion/solution. J Pharm Sci 94(11):2463–2474

    Article  CAS  PubMed  Google Scholar 

  150. Xie T, Gao C, Wang C, Shen S, Wu Y (2014) Application of poly (butylenes 2-methylsuccinate) as migration resistant plasticizer for poly (vinyl chloride). Polym Plast Technol Eng 53(5):465–471

    Article  CAS  Google Scholar 

  151. White CJ, Thomas CR, Byrne ME (2014) Bringing comfort to the masses: a novel evaluation of comfort agent solution properties. Cont Lens Anterior Eye 37(2):81–91

    Article  PubMed  Google Scholar 

  152. Ruel-Gariepy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58(2):409–426

    Article  CAS  PubMed  Google Scholar 

  153. Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32(8):933–961

    Article  CAS  Google Scholar 

  154. Kausar A, Hussain A, Khan MY, Siddiq M (2014) Fuel cell membranes prepared from multi-walled carbon nanotubes and silica nanotubes-filled sulfonated polyamide/sulfonated polystyrene porous blend films. J Plast Film Sheeting 30(3):314–336

    Article  CAS  Google Scholar 

  155. Ueno M, Imanishi N, Hanai K, Kobayashi T, Hirano A, Yamamoto O, Takeda Y (2011) Electrochemical properties of cross-linked polymer electrolyte by electron beam irradiation and application to lithium ion batteries. J Power Sources 196(10):4756–4761

    Article  CAS  Google Scholar 

  156. Yao J, Wu H, Ruan Y, Guan J, Wang A, Li H (2011) “Reservoir” and “barrier” effects of ABC block copolymer micelle in hydroxyapatite mineralization control. Polymer 52(3):793–803

    Article  CAS  Google Scholar 

  157. Wang Z, Chen X, Li K, Bi S, Wu C, Chen L (2015) Preparation and catalytic property of PVDF composite membrane with polymeric spheres decorated by Pd nanoparticles in membrane pores. J Membr Sci 496:95–107

    Article  CAS  Google Scholar 

  158. Khalil AM, Georgiadou V, Guerrouache M, Mahouche-Chergui S, Dendrinou-Samara C, Chehimi MM, Carbonnier B (2015) Gold-decorated polymeric monoliths: in-situ vs ex situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction. Polymer 77:218–226

    Article  CAS  Google Scholar 

  159. Domènech B, Muñoz M, Muraviev D, Macanás J (2012) Catalytic membranes with palladium nanoparticles: from tailored polymer to catalytic applications. Catal Today 193(1):158–164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Razzaq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, T., Razzaq, H., Razzaque, S. et al. Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym. Bull. 76, 4879–4901 (2019). https://doi.org/10.1007/s00289-018-2616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2616-3

Keywords

Navigation