Skip to main content
Log in

Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, a feasible protocol for the rapid preparation of polylactide (PLA) stereocomplex (SC) crystallite by extrusion was shown, in which a processing temperature lower than its melting point was chosen to suppress the thermal degradation and homocrystallization of PLA. Meanwhile, flexible and biodegradable poly(butylene adipate-co-terephthalate) (PBAT) was introduced to improve the processability of solid SC crystallite. The exclusive formation of SC crystallite with high crystallinity (~ 50 to 60%) was realized without further thermal treatment, which was clearly confirmed by wide-angle X-ray diffraction and different scanning calorimeter tests. It was found that certain amount of PBAT actually facilitates the stereocomplexation process, rendering the extrusion much smooth with 30 wt% more PBAT, thus making it promising to industrially achieve SC crystallite. Furthermore, the as-prepared PBAT/SC blend could be processed easily at a relatively low temperature, desirably allowing its scalable application. This work delivers a facile method for the efficient preparation and wider application of SC crystallite, which could be of great value to fabricate nucleating agents or heat-resistant PLA parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  2. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  3. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromol 12:523–532

    Article  CAS  Google Scholar 

  4. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  5. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  6. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  7. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    Article  CAS  Google Scholar 

  8. Tan BH, Muiruri JK, Li ZB, He CB (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391

    Article  CAS  Google Scholar 

  9. Tsuji H (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films. Biomaterials 24:537–547

    Article  CAS  PubMed  Google Scholar 

  10. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  11. Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macro Rapid Commun 38:1700454

    Article  CAS  Google Scholar 

  12. Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72

    Article  CAS  Google Scholar 

  13. Purnama P, Kim SH (2010) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43:1137–1142

    Article  CAS  Google Scholar 

  14. Samuel C, Cayuela J, Barakat I, Mueller AJ, Raquez J-M, Dubois P (2013) Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces 5:11797–11807

    Article  CAS  PubMed  Google Scholar 

  15. Davachi SM, Kaffashi B (2015) Polylactic acid in medicine. Polym Plast Technol Eng 54:944–967

    Article  CAS  Google Scholar 

  16. Yu HX, Huang NX, Wang CS, Tang ZL (2003) Modeling of poly(L-lactide) thermal degradation: theoretical prediction of molecular weight and polydispersity index. J Appl Polym Sci 88:2557–2562

    Article  CAS  Google Scholar 

  17. Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82

    Article  CAS  Google Scholar 

  18. Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Stereocomplexation from the melt. Macromolecules 26:6918–6926

    Article  CAS  Google Scholar 

  19. Tsuji H, Horii F, Hyon SH, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724

    Article  CAS  Google Scholar 

  20. Bao R-Y, Yang W, Wei X-F, Xie B-H, Yang M-B (2014) Enhanced formation of stereocomplex crystallites of high molecular weight poly(l-lactide)/poly(d-lactide) blends from melt by using poly(ethylene glycol). ACS Sustain Chem Eng 2:2301–2309

    Article  CAS  Google Scholar 

  21. Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296:583–589

    Article  CAS  Google Scholar 

  22. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromol 7:3316–3320

    Article  CAS  Google Scholar 

  23. Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). 8. Complex fibers spun from mixed-solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344

    Article  CAS  Google Scholar 

  24. Brzezinski M, Boguslawska M, Ilcikova M, Mosnacek J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45:8714–8721

    Article  CAS  Google Scholar 

  25. Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713

    Article  CAS  Google Scholar 

  26. Ma P, Jiang L, Xu P, Dong W, Chen M, Lemstra PJ (2015) Rapid stereocomplexation between enantiomeric comb-shaped cellulose-g-poly(L-lactide) nanohybrids and poly(D-lactide) from the melt. Biomacromol 16:3723–3729

    Article  CAS  Google Scholar 

  27. Bao R-Y, Yang W, Jiang W-R et al (2012) Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer 53:5449–5454

    Article  CAS  Google Scholar 

  28. Bai H, Liu H, Bai D et al (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5:5985–5993

    Article  CAS  Google Scholar 

  29. Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol 7:199–207

    Article  CAS  Google Scholar 

  30. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647

    Article  CAS  Google Scholar 

  31. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926

    Article  CAS  Google Scholar 

  32. Xiao H, Lu W, Yeh JT (2009) Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci 112:3754–3763

    Article  CAS  Google Scholar 

  33. Gu SY, Zhang K, Ren J, Zhan H (2008) Melt rheology of polylactide/poly(butylene adipate- co -terephthalate) blends. Carbohydr Polym 74:79–85

    Article  CAS  Google Scholar 

  34. Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450

    Article  CAS  Google Scholar 

  35. Cartier L, Takumi Okihara A, Lotz B (1997) Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures. Macromolecules 30:6313–6322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support from the National Natural Science Foundation of China (Grant Nos. 51673135, 21776186, 21776183 and 51503023), the Youth Foundation of Science & Technology Department of Sichuan Province (Grant No. 2017JQ0017) and State Key Laboratory of Polymer Materials Engineering (China, Grant No. sklpme2017-2-07). We would also like to express our sincere thanks to the National Synchrotron Radiation Laboratory, Shanghai, China, for their kind help on synchrotron WAXD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan-Ji Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XR., Niu, B., Hua, WQ. et al. Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point. Polym. Bull. 76, 3371–3385 (2019). https://doi.org/10.1007/s00289-018-2544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2544-2

Keywords

Navigation