Skip to main content
Log in

Influence of cellulose nanofiber content on the expansion of polystyrene nanocomposites expanded by supercritical CO2

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanotechnology applied to polymer foams is an emerging field. The possibility to add nanofillers to polymers and to expand them by supercritical carbon dioxide represents an important development in polymer foam production, tailoring the foams’ properties. In this study, polystyrene (PS) composites with cellulose nanofibers (CNF) were obtained by producing PS/CNF nanocomposites and subsequently expanding them with supercritical CO2. The viscosity, mechanical and dynamic-mechanical properties of non-expanded composites were obtained. The morphology and compressive strength of the expanded composites were evaluated. The non-expanded composites’ mechanical properties remained unchanged, and the viscosity increased with the addition of CNF. PS/CNF non-expanded composites displayed higher storage modulus in the rubbery region with increasing CNF content. The expanded foams displayed smaller cell size as CNF is introduced, which increased the compressive strength and decreased the deformation at 5 wt% CNF. This allows the tailoring of the mechanical properties and cell size with varying CNF content to better suit a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang J, Wu M, Chen F, Fei Z, Zhong M (2011) Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J Supercrit Fluid 56:201–207. https://doi.org/10.1016/j.supflu.2010.12.014

    Article  CAS  Google Scholar 

  2. Mori T, Hayashi H, Okamoto M, Yamasaki S, Hayami H (2009) Foam processing of polyethylene ionomers with supercritical CO2. Compos Part A Appl Sci 40:1708–1716. https://doi.org/10.1016/j.compositesa.2009.08.018

    Article  CAS  Google Scholar 

  3. Goren K, Chen L, Schadler LS, Ozisik R (2010) Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J Supercrit Fluid 51:420–427. https://doi.org/10.1016/j.supflu.2009.09.007

    Article  CAS  Google Scholar 

  4. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G (2005) Polymer nanocomposite foams. Compos Sci Technol 65:2344–2363. https://doi.org/10.1016/j.compscitech.2005.06.016

    Article  CAS  Google Scholar 

  5. Kourki H, Famili MHN, Mortezaei M, Malekipirbazar M (2017) Mixing challenges for SiO2/polystyrene nanocomposites. J Thermoplast Compos 1:1–18. https://doi.org/10.1177/0892705717718599

    Article  CAS  Google Scholar 

  6. Famili MHN, Janani H, Enayati MS (2010) Foaming of a polymer-nanoparticle system: effect of the particle properties. J Appl Polym Sci 119:2847–2856. https://doi.org/10.1002/app.32969

    Article  CAS  Google Scholar 

  7. Wong A, Mark LH, Hasan MM, Park CB (2014) The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. J Supercrit Fluid 90:35–43. https://doi.org/10.1016/j.supflu.2014.03.001

    Article  CAS  Google Scholar 

  8. Tsivintzelis I, Sanxaridou G, Pavlidou E, Panayiotou C (2016) Foaming of polymers with supercritical fluids: a thermodynamic investigation. J Supercrit Fluid 110:240–250. https://doi.org/10.1016/j.supflu.2015.11.025

    Article  CAS  Google Scholar 

  9. Jacobs MA, Kemmere MF, Keurentjes JTF (2004) Foam processing of poly(ethylene-co-vinyl acetate) rubber using supercritical carbon dioxide. Polymer 45:7539–7547. https://doi.org/10.1016/j.polymer.2004.08.061

    Article  CAS  Google Scholar 

  10. Tsivintzelis I, Angelopoulou AG, Panayiotou C (2007) Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 48:5928–5939. https://doi.org/10.1016/j.polymer.2007.08.004

    Article  CAS  Google Scholar 

  11. Ngo TTV, Rumeau JD, Whittaker AK, Gerard JF (2010) Processing of nanocomposite foams in supercritical carbon dioxide. Part I: effect of surfactant. Polymer 51:3436–3444. https://doi.org/10.1016/j.polymer.2010.05.039

    Article  CAS  Google Scholar 

  12. Cho SY, Park HH, Yun YS, Jin HJ (2013) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529–533. https://doi.org/10.1007/s13233-013-1057-y

    Article  CAS  Google Scholar 

  13. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432. https://doi.org/10.1021/bm801193d

    Article  CAS  Google Scholar 

  14. Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102. https://doi.org/10.1007/s10570-011-9630-z

    Article  CAS  Google Scholar 

  15. Zimmermann MVG, Borsoi C, Lavoratti A, Zanini M, Zattera AJ, Santana RMC (2016) Drying techniques applied to cellulose nanofibers. J Reinf Plast Comp 35:628–643. https://doi.org/10.1177/0731684415626286

    Article  CAS  Google Scholar 

  16. Reverchon E, Cardea S (2007) Production of controlled polymeric foams by supercritical CO2. J Supercrit Fluid 40:144–152. https://doi.org/10.1016/j.supflu.2006.04.013

    Article  CAS  Google Scholar 

  17. Sauceau M, Nikitine C, Rodier C, Fages J (2007) Effect of supercritical carbon dioxide on polystyrene extrusion. J Supercrit Fluid 43:367–373. https://doi.org/10.1016/j.supflu.2007.05.014

    Article  CAS  Google Scholar 

  18. Arora KA, Lesser AJ, McCarthy TJ (1998) Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31:4614–4620. https://doi.org/10.1021/ma971811z

    Article  CAS  Google Scholar 

  19. Poletto M, Zattera AJ (2015) Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers. J Thermoplas Compos 30:1242–1254. https://doi.org/10.1177/0892705715619967

    Article  CAS  Google Scholar 

  20. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  21. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. https://doi.org/10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  22. Petchwattana N, Covavisaruch S (2011) Influences of particle sizes and contents of chemical blowing agents on foaming wood plastic composites prepared from poly(vinyl chloride) and rice hull. Mater Des 32:2844–2850. https://doi.org/10.1016/j.matdes.2010.12.044

    Article  CAS  Google Scholar 

  23. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crop Prod 40:232–238. https://doi.org/10.1016/j.indcrop.2012.03.018

    Article  CAS  Google Scholar 

  24. Lavoratti A, Scienza LC, Zattera AJ (2016) Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohyd Polym 136:955–963. https://doi.org/10.1016/j.carbpol.2015.10.008

    Article  CAS  Google Scholar 

  25. Jabbar A, Militký J, Wiener J, Kale BM, Ali U, Rwawiire S (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349. https://doi.org/10.1016/j.compstruct.2016.11.062

    Article  Google Scholar 

  26. Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896. https://doi.org/10.1002/app.32388

    Article  CAS  Google Scholar 

  27. Romanzini D, Lavoratti A, Ornaghi HL, Amico SC, Zattera AJ (2013) Influence of fiber content on the Mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15. https://doi.org/10.1016/j.matdes.2012.12.029

    Article  CAS  Google Scholar 

  28. Chirayil CJ, Mathew L, Hassan PA, Mozetic M, Thomas S (2014) Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites. Int J Biol Macromol 69:274–281. https://doi.org/10.1016/j.ijbiomac.2014.05.055

    Article  CAS  PubMed  Google Scholar 

  29. Khiari R (2017) Valorization of agricultural residues for cellulose nanofibrils production and their use in nanocomposite manufacturing. Int J Polym Sci 2017:1–10. https://doi.org/10.1155/2017/6361245

    Article  CAS  Google Scholar 

  30. Margem FM, Monteiro SN, Neto JB, Rodriguez RJS, Soares BG (2010) The dynamic-mechanical behavior of epoxy matrix composites reinforced with ramie fibers. Matéria 15:164–171. https://doi.org/10.1590/S1517-70762010000200012

    Article  Google Scholar 

  31. Lee KY, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27. https://doi.org/10.1016/j.compscitech.2014.08.032

    Article  CAS  Google Scholar 

  32. Nikfarjam N, Qazvini NT, Deng Y (2015) Surfactant free Pickering emulsion polymerization of styrene in w/o/w system using cellulose nanofibrils. Eur Polym J 64:179–188. https://doi.org/10.1016/j.eurpolymj.2015.01.007

    Article  CAS  Google Scholar 

  33. Doroudiani S, Kortschot MT (2004) Expanded wood fiber polystyrene composites: processing–structure–mechanical properties relationships. J Thermoplast Compos 17:13–30. https://doi.org/10.1177/0892705704035405

    Article  CAS  Google Scholar 

  34. Eaves D (2004) Handbook of polymer foams. Smithers Rapra, Shrewsbury

    Google Scholar 

  35. Zhao J, Zhao Q, Wang L, Wang C, Guo B, Park CB, Wang G (2018) Development of high thermal insulation and compressive strength BPP foams using mold-opening foam injection molding with in situ fibrillated PTFE fibers. Eur Polym J 98:1–10. https://doi.org/10.1016/j.eurpolymj.2017.11.001

    Article  CAS  Google Scholar 

  36. Zhao J, Zhao Q, Wang C, Guo B, Park CB, Wang G (2017) High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater Design 131:1–11. https://doi.org/10.1016/j.matdes.2017.05.093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Council of Technological and Scientific Development (CNPq), and the Secretariat of Science, Innovation and Development of Rio Grande do Sul (SCT/RS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Lavoratti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, M.V.G., Boakoski, D.G., Lavoratti, A. et al. Influence of cellulose nanofiber content on the expansion of polystyrene nanocomposites expanded by supercritical CO2. Polym. Bull. 75, 5809–5824 (2018). https://doi.org/10.1007/s00289-018-2360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2360-8

Keywords

Navigation