Skip to main content
Log in

Crystal structure: a way to control properties in cast films of polypropylene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The efficiency of the degree of cooling and shear-induced crystallization on the formation of different crystal polymorphs and morphology development of isotactic polypropylene (iPP) and random propylene–ethylene copolymer was analysed in cast films. Wide-angle X-ray scattering was applied to evaluate the crystal structure formed in films solidified at different chill roll temperatures (15, 40, and 70 °C) and throughputs of the line (60 and 120 kg/h). The crystal geometry and morphology were visualized by atomic force microscopy. For films generated at 15 °C or at large supercooling together with the nodular domain additional grained round-shaped structures composed of mesophase were detected on the film surface. Increase of the chill roll temperature or lower supercooling allowed formation of the monoclinic phase of iPP. Higher drawing rate triggered crystal formation preferably on the surface of films quenched at 15 °C. The crystal structure and morphology were correlated to selected optical and mechanical properties. At close-to-identical crystallinity, the crystal aspect ratio and film roughness play a major role in controlling the film transparency and stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data adapted from [28]

Fig. 2
Fig. 3
Fig. 4

Data adapted from [28]

Fig. 5

Data adapted from [34]

Similar content being viewed by others

References

  1. Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci Part B Phys B31:501–505

    Article  Google Scholar 

  2. Piccarolo S, Alessi S, Brucato V, Titomanlio G (1993) Crystallization behaviour at high cooling rates of two polypropylenes. In: Dosier M (ed) Crystallization of polymers. Dordrecht, Kluwer, pp 475–480

    Google Scholar 

  3. Zia Q, Androsch R, Radusch HJ, Piccarolo S (2006) Morphology, reorganization, and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163–8172

    Article  CAS  Google Scholar 

  4. De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567

    Article  Google Scholar 

  5. Gradys A, Sajkiewic P, Minakov AA, Adamovsky S, Schick C, Hashimoto T, Saijo K (2005) Crystallization of polypropylene at various cooling rate. Mat Sci Eng A413–414:442–446. https://doi.org/10.1016/j.msea.2005.08.167

    Article  CAS  Google Scholar 

  6. Binsbergen FL, De Lange BGM (1968) Morphology of polypropylene from the melt. Polymer 9:23–40. https://doi.org/10.1016/0032-3861(68)90006-2

    Article  CAS  Google Scholar 

  7. Bassett DC, Olley RH (1984) On the lamellar morphology of isotactic polypropylene spherulites. Polymer 25:935–943. https://doi.org/10.1016/0032-3861(84)90076-4

    Article  CAS  Google Scholar 

  8. Mileva D, Androsch R, Zhuravlev E, Schick C (2009) Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 42(19):7275–7278

    Article  CAS  Google Scholar 

  9. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290:465–471

    Article  CAS  Google Scholar 

  10. Cavallo D, Gardella L, Alfonso GC, Mileva D, Androsch R (2012) Mesophase-mediated crystallization of poly(butylene-2,6-naphthalate): an example of Ostwald’s rule of stages. Polymer 53(20):4429–4437

    Article  CAS  Google Scholar 

  11. Gahleitner M, Jääskeläinen P, Ratajski E, Paulik C, Reussner J, Wolfschwenger J, Neißl W (2005) Propylene–ethylene random copolymers: comonomer effects on crystallinity and application properties. J Appl Polym Sci 95:1073–1081

    Article  CAS  Google Scholar 

  12. Lamberti G, Brucato V (2003) Real-time orientation and crystallinity measurements during the isotactic polypropylene film-casting process. J Appl Polym Sci 41:998–1008

    Article  CAS  Google Scholar 

  13. Zia Q, Tranchida D, Androsch R, Schönerr H (2012) Effect of crystal habit and superstructure on modulus of elasticity of isotactic polypropylene by AFM nanoindentation. J Mater Sci 47:3040–3045

    Article  CAS  Google Scholar 

  14. Zia Q, Mileva D, Androsch R (2010) Deformation behavior of isotactic polypropylene crystallized via the mesophase. Polym Bull 65:623–634

    Article  Google Scholar 

  15. Cerrada ML, Polo-Corpo MJ, Benavente R, Perez E, Velilla T (2009) Formation of the new trigonal polymorph in iPP–1-hexene copolymers. Competition with the mesomorphic phase. Macromolecules 42:702–708

    Article  CAS  Google Scholar 

  16. Mileva D, Androsch R, Radusch HJ (2008) Effect of cooling rate on melt-crystallization of random propylene–ethylene and propylene-1-butene copolymers. Polym Bull 61:643–654

    Article  CAS  Google Scholar 

  17. Cavallo D, Azzurri F, Floris R, Alfonso GC, Balzano L, Peters GW (2010) Continuous cooling curves diagrams of propene/ethylene random copolymers. The role of ethylene counits in mesophase development. Macromolecules 43:2890–2896

    Article  CAS  Google Scholar 

  18. Aniunoh K, Harrison G (2010) The processing of polypropylene cast films. I. Impact of material properties and processing conditions on film formation. Polym Eng Sci 50:1151–1160. https://doi.org/10.1002/pen.21637

    Article  CAS  Google Scholar 

  19. Sadeghi F, Tabatabaei SH, Ajji A, Carreau PJ (2010) Properties of uniaxial stretched polypropylene films: effect of drawing temperature and random copolymer content. Can J Chem Eng 88:1091–1098. https://doi.org/10.1002/cjce.20372

    Article  CAS  Google Scholar 

  20. Tabatabaei S, Abdellah A (2011) Effect of initial crystalline morphology on properties of polypropylene cast films. J Plast Film Sheeting 27:223–233. https://doi.org/10.1177/8756087911407921

    Article  CAS  Google Scholar 

  21. Cimmino S, Martuscelli E, Nicolais L, Silvestre C (1978) Thermal and mechanical properties of isotactic random propylene–butene-1-copolymer. Polymer 19:1222–1223

    Article  CAS  Google Scholar 

  22. Marega C, Marigo A, Saini R, Ferrari P (2001) The influence of thermal treatment and processing on the structure and morphology of poly(propylene-ran-1-butene) copolymers. Polym Int 50:442–448

    Article  CAS  Google Scholar 

  23. Resch K, Wallner G, Teichert C, Maier G, Gahleitner M (2006) Optical properties of highly transparent polypropylene cast films: influence of material structure, additives, and processing conditions. Polym Eng Sci 46:520–531

    Article  CAS  Google Scholar 

  24. Gahleitner M, Grein C, Blell R, Wolfschwenger J, Koch T, Ingolic E (2011) Sterilization of propylene/ethylene random copolymers: annealing effects on crystalline structure and transparency as influenced by polymer structure and nucleation. Exp Polym Lett 5:788–798

    Article  CAS  Google Scholar 

  25. Meng X, Shijun Z, Jieying L, Hui Q, Jianyeiu L, Hongwei S, Dali G, Jie L (2014) Influences of processing on the phase transition and crystallization of polypropylene cast films. J Appl Polym Sci 41100:1–9. https://doi.org/10.1002/APP.41100

    Article  Google Scholar 

  26. Resconi L (1999) Synthesis of atactic poly(propylene) using metallocene catalysts. In: Kaminsky W, Scheirs J (eds) Metallocene based polyolefins, vol 1. Wiley, New York, pp 467–484

    Google Scholar 

  27. Willmouth FM (1986) Transparency, translucency, and gloss. In: Meeten GH (ed) Optical properties of polymers. Elsevier, London

    Google Scholar 

  28. Mileva D, Gahleitner M, Gloger D (2016) In: AIP conference proceedings vol. 1736, p 020069. https://doi.org/10.1063/1.4949644

  29. De Rosa C, Auriemma F, Di Girolamo R, Romano L, De Luca MR (2010) A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43:8559–8569

    Article  Google Scholar 

  30. Humbert S, Lame O, Seguela R, Vigier G (2011) A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer 52:4899–4909

    Article  CAS  Google Scholar 

  31. Bédoui F, Diani J, Régnier G (2004) Micromechanical modeling of elastic properties in polyolefins. Polymer 45:2433–2442

    Article  Google Scholar 

  32. Popli R, Mandelkern L (1987) Influence of structural and morphological factors on the mechanical properties of the polyethylenes. J Polym Sci Part B Polym Phys 25:441–483

    Article  CAS  Google Scholar 

  33. Mileva D, Androsch R, Radusch H-J (2009) Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polym Bull 62(4):561–571

    Article  CAS  Google Scholar 

  34. Gahleitner M, Mileva D, Gloger D, Androsch R, Tranchida D (2017) Polymer structure effects on crystallization and properties in polypropylene film casting. In: AIP conference proceedings vol. 1914. https://doi.org/10.1063/1.5016762

Download references

Acknowledgements

The authors would like to acknowledge Walter Schaffer for the AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Mileva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mileva, D., Gahleitner, M., Gloger, D. et al. Crystal structure: a way to control properties in cast films of polypropylene. Polym. Bull. 75, 5587–5598 (2018). https://doi.org/10.1007/s00289-018-2343-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2343-9

Keywords

Navigation