Skip to main content
Log in

Surface morphology of chlorine and castor oil-based polyurethane–urea coatings

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work deals with surface properties of chlorine containing polyurethane–urea (PU–urea)-coating films. First, isocyanate-terminated pre-polymers were synthesized using castor oil as renewable resource, isophorone diisocyanate, and different weight percentages of 2-chloroethanol and 2,2,2-trichloroethanol. The resultant isocyanate-terminated pre-polymers were cured under atmospheric moisture to obtain chlorine containing PU–urea coatings. The surface properties of the coating films were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and X-ray diffraction. All characterization techniques suggest that the presence of chlorine species on the surface results in different surface properties when compared to control PU–urea (without the chlorine group)-coating film surface. The viscoelastic, swelling, and contact angle (CA) properties were studied for the prepared coating films. The glass-transition temperatures (Tg) were obtained in the region 29.2–35 °C for the coating films. Tg increased by increasing the chlorine content in polyurethane-coating formulations. The CA for the coating films was found to be in the range of 76°–64° and these properties were found to be decreased with increase in the weight percent content of the chlorine moiety in the final coating formulation. Similarly, the higher chlorine content-coating films have shown more water uptake properties. The overall comparative results indicate that the chlorine containing PU–urea-coating films have different surface-coating properties and these depend upon the chlorine content in the final coating formulation as compared with PU–urea surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaplan DL (1998) Introduction to biopolymers from renewable resources. Biopolymers from renewable resources. Springer, Berlin, pp 1–29

    Chapter  Google Scholar 

  2. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio) materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    Article  CAS  Google Scholar 

  3. Marques Pereira-Júnior OC, Rahal SC, Iamaguti P, Felisbino SL, Pavan PT, Vulcano LC (2007) Comparison between polyurethanes containing castor oil (soft segment) and cancellous bone autograft in the treatment of segmental bone defect induced in rabbits. J Biomater Appl 21:283–297

    Article  CAS  Google Scholar 

  4. Woods G (1990) The ICI polyurethanes book, 2nd edn. Wiley, New York

    Google Scholar 

  5. Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. Chemsuschem 4:703–717

    Article  CAS  PubMed  Google Scholar 

  6. Lligadas G, Ronda JC, Galia M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromol 11:2825–2835

    Article  CAS  Google Scholar 

  7. Höfer R, Daute P, Grützmacher R, Westfechtel A (1997) Oleochemical polyols—a new raw material source for polyurethane coatings and floorings. J Coat Technol 69:65–72

    Article  Google Scholar 

  8. Xu Y, Petrovic Z, Das S, Wilkes GL (2008) Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 49:4248–4258

    Article  CAS  Google Scholar 

  9. Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155

    Article  CAS  Google Scholar 

  10. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Poly Sci 32:352–418

    Article  CAS  Google Scholar 

  11. Shaik A, Narayan R, Raju KVSN (2014) Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J Coat Technol Res 11:397–407

    Article  CAS  Google Scholar 

  12. Janik H, Vancso J (2005) The influence of hard segment crosslinking on the morphology and mechanical properties of segmented poly (ester-urethanes). Polimery 50:139–142

    CAS  Google Scholar 

  13. Stribeck A, Pöselt E, Eling B, Jokari-Sheshdeh F, Hoell A (2017) Thermoplastic polyurethanes with varying hard-segment components. Mechanical performance and a filler-crosslink conversion of hard domains as monitored by SAXS. Eur Polym J 94:340–353

    Article  CAS  Google Scholar 

  14. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  15. Reddy KR, Raghu AV, Jeong HM, Siddaramaiah (2009) Synthesis and characterization of pyridine-based polyurethanes. Des Monomers Polym 12:109–118

    Article  CAS  Google Scholar 

  16. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci B 51:197–207

    Article  CAS  Google Scholar 

  17. Aslzadeh MM, Mir Mohamad Sadeghi G, Abdouss M (2012) Synthesis and characterization of chlorine-containing flame-retardant polyurethane nanocomposites via in situ polymerization. J Appl Polym Sci 123:437–447

    Article  CAS  Google Scholar 

  18. Ye L, Meng XY, Liu XM, Tang JH, Li ZM (2009) Flame-retardant and mechanical properties of high-density rigid polyurethane foams filled with decabrominated dipheny ethane and expandable graphite. J Appl Polym Sci 111:2372–2380

    Article  CAS  Google Scholar 

  19. El Khatib W, Youssef B, Bunel C, Mortaigne B (2003) Fireproofing of polyurethane elastomers by reactive organophosphonates. Polym Int 52:146–152

    Article  CAS  Google Scholar 

  20. Khatua S, Hsieh YL (1997) Chlorine degradation of polyether-based polyurethane. J Polym Sci Part A Polym Chem 35:3263–3273

    Article  CAS  Google Scholar 

  21. Raynor RJ (1992) Olin Corporation, assignee. Chlorination of amide containing oligomers and polymers. United States patent US 5,093,431

  22. John Wiley & Sons (2008) Characterization and analysis of polymers. Wiley, Hoboken

    Google Scholar 

  23. Yaseen M, Raju KVSN (1982) A critical analysis of various methods for preparation of free films of organic coatings. Prog Org Coat 10:125–155

    Article  CAS  Google Scholar 

  24. Jena KK, Narayan R, Raju KVSN (2010) Hyperbranched polyester based on the core + AB2 approach: synthesis and structural investigation. J Appl Polym Sci 118:280–290

    Article  CAS  Google Scholar 

  25. Jena KK, Raju KVSN, Prathab B, Aminabhavi TM (2007) Hyperbranched polyesters: synthesis, characterization, and molecular simulations. J Phys Chem B 111:8801–8811

    Article  CAS  PubMed  Google Scholar 

  26. Jena KK, Raju KVSN (2007) Synthesis and characterization of hyperbranched polyurethane-urea/silica based hybrid coatings. Ind Eng Chem Res 46:6408–6416

    Article  CAS  Google Scholar 

  27. Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) Influence of varying hard segments on the properties of chemically crosslinked moisture-cured polyurethane-urea. J Polym Sci B Polym Phys 44:102–118

    Article  CAS  Google Scholar 

  28. Allauddin S, Chandran MA, Jena KK, Narayan R, Raju KVSN (2013) Synthesis and characterization of APTMS/melamine cured hyperbranched polyester-epoxy hybrid coatings. Prog Org Coat 76:1402–1412

    Article  CAS  Google Scholar 

  29. Florian P, Jena KK, Allauddin S, Narayan R, Raju KVSN (2010) Preparation and characterization of waterborne hyperbranched polyurethane-urea and their hybrid coatings. Ind Eng Chem Res 49:4517–4527

    Article  CAS  Google Scholar 

  30. Smalley RK, Wakeld BJ (1970) Correlation tables for infrared spectra. Pergamon Press, New York, pp 165–195

  31. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN (2006) FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog Org Coat 55:231–243

    Article  CAS  Google Scholar 

  32. Chattopadhyay DK, Panda SS, Raju KVSN (2005) Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog Org Coat 54:10–19

    Article  CAS  Google Scholar 

  33. Papirer E, Lacroix R, Donnet JB, Nansé G, Fioux P (1995) XPS study of the halogenation of carbon black—part 2. Chlorination. Carbon 33:63–72

    Article  CAS  Google Scholar 

  34. Hubert J, Poleunis C, Delcorte A, Laha P, Bossert J, Lambeets S, Ozkan A, Bertrand P, Terryn H, Reniers F (2013) Plasma polymerization of C4Cl6 and C2H2Cl4 at atmospheric pressure. Polymer 54:4085–4092

    Article  CAS  Google Scholar 

  35. Vasquez M, Cruz GJ, Olayo MG, Timoshina T, Morales J, Olayo R (2006) Chlorine dopants in plasma synthesized heteroaromatic polymers. Polymer 47:7864–7870

    Article  CAS  Google Scholar 

  36. Abdelkader VK, Scelfo S, García-Gallarín C, Godino-Salido ML, Domingo-García M, López-Garzón FJ, Pérez-Mendoza M (2013) Carbon tetrachloride cold plasma for extensive chlorination of carbon nanotubes. J Phys Chem C 117:16677–16685

    Article  CAS  Google Scholar 

  37. Atzei D, Elsener B, Manfredini M, Marchetti A, Malagoli M, Galavotti F, Rossi A (2003) Radiation-induced migration of additives in PVC-based biomedical disposable devices Part 2. Surface analysis by XPS. Surf Interface Anal 35:673–681

    Article  CAS  Google Scholar 

  38. Real LP, Ferraria AM, do Rego AB (2007) The influence of weathering conditions on the properties of poly (vinyl chloride) for outdoor applications. An analytical study using surface analysis techniques. Polym Test 26:77–87

    Article  CAS  Google Scholar 

  39. Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47:457–465

    Article  CAS  Google Scholar 

  40. Kovačević V, Šmit I, Hace D, Sućeska M, Mudri I, Bravar M (1993) Role of the polyurethane component in the adhesive composition on the hydrolytic stability of the adhesive. Int J Adhes Adhes 13:126–136

    Article  Google Scholar 

  41. Kovacevic V, Kljajie-Malinovic LJ, Smit I, Bravar M, Agic A, Cerovecki Z (1990) Adhesive composition systems in degradative conditions. Adhesion, vol 14. Springer, Dordrecht, pp 126–160

    Google Scholar 

  42. Zia KM, Barikani M, Zuber M, Bhatti IA, Bhatti HN (2008) Morphological studies of polyurethane elastomers extended with alpha, omega alkane diols. Iran Polym J 17:61–72

    CAS  Google Scholar 

  43. Can BH, Ward RS, Schneider NS (1982) A new criterion of phase separation: the effect of diamine chain extenders on the properties of polyurethaneureas. J Appl Polym Sci 27:2167–2177

    Article  Google Scholar 

  44. Wingborg N (2002) Increasing the tensile strength of HTPB with different isocyanates and chain extenders. Polym Test 21:283–287

    Article  CAS  Google Scholar 

  45. Park HS, Kwon SY, Seo KJ, Im WB, Wu JP, Kim SK (1999) Preparation and physical properties of polyurethane flame retardant coatings using phosphorus-containing lactone modified polyesters. J Coat Technol 71:59–65

    Article  CAS  Google Scholar 

  46. Oprea S, Oprea V (2013) Synthesis and characterization of the cross-linked polyurethane–gum arabic blends obtained by multi acrylates cross-linking polymerization. J Elastom Plast 45:564–576

    Article  CAS  Google Scholar 

  47. Pastor-Blas MM, Sánchez-Adsuar MS, Martín-Martínez JM (1994) Surface modification of synthetic vulcanized rubber. J Adhes Sci Technol 8:1093–1114

    Article  CAS  Google Scholar 

  48. Allauddin S, Narayan R, Raju KVSN (2013) Synthesis and properties of alkoxysilane castor oil and their polyurethane/urea–silica hybrid coating films. ACS Sustain Chem Eng 1:910–918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Council of Scientific and Industrial Research (CSIR), New Delhi and Director, CSIR-IICT for financial support in the form of a research fellowship. The present research was supported by CSIR under the Intel-Coat Project (CSC-0114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju V. S. N. Kothapalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allauddin, S., Somisetti, V., Narayan, R. et al. Surface morphology of chlorine and castor oil-based polyurethane–urea coatings. Polym. Bull. 75, 5269–5285 (2018). https://doi.org/10.1007/s00289-018-2319-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2319-9

Keywords

Navigation