Skip to main content
Log in

Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Crystallization kinetics of polycaprolactone (PCL) filled with TiO2-based particles (TiX) was shown to depend on the TiX particle type and concentration, which were associated with a slight polymer matrix degradation. The partially degraded, shorter, and more mobile polymer chains increased the overall crystallization rate at the initial stage of crystallization, while at the later stages, the non-nucleating TiX particles acted as a sterical hindrance, slowing down the crystallization process. The PCL/TiX composites were prepared by melt-mixing and contained 2.5 and 5 wt% of the filler. The investigated TiX particles included isometric anatase microparticles (mTiO2) and titanate nanotubes with high-aspect ratio (TiNT). Light and electron microscopy showed very homogeneous dispersion of the mTiO2 particles in the PCL matrix, while the TiNT formed large agglomerates. In situ polarized light microscopy displayed faster isothermal crystallization of all PCL/TiX composites, but the micrographs indicated that the TiX particles did not act as nucleation centres. Isothermal DSC experiments, evaluated in terms of Avrami theory, confirmed the PLM results and showed that the overall rate of isothermal crystallization increased in the following order: PCL <PCL/TiNT <PCL/mTiO2. Non-isothermal DSC and rheological measurements revealed the correlation between the crystallization rate and the polymer matrix degradation—the well-dispersed mTiO2 particles with high specific surface caused the highest PCL degradation and, consequently, the earliest start of non-isothermal crystallization as well as the fastest isothermal crystallization. Microindentation hardness measurements confirmed that the partial degradation of the polymer matrix did not have a significant impact on the mechanical performance of PCL/mTiO2 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jana RN, Im C (2009) Isothermal crystallization behavior of poly(ε-caprolactone) diol/functionalized-multiwalled carbon nanotube composites. Int J Polym Anal Charact 14:418–436. doi:10.1080/10236660903031074

    Article  CAS  Google Scholar 

  2. Jenkins MJ, Harrison KL (2006) The effect of molecular weight on the crystallization kinetics of polycaprolacton. Polym Adv Technol 17:474–478. doi:10.1002/pat.733

    Article  CAS  Google Scholar 

  3. Albertsson AC, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci 157:1–40. doi:10.1007/3-540-45734-8_1

    Article  CAS  Google Scholar 

  4. Wei Z, Wang G, Wang P, Liu L, Qi M (2012) Crystallization behavior of poly(ε-caprolactone)/TiO2 nanocomposites obtained by in situ polymerization. Polym Eng Sci 52:1047–1057. doi:10.1002/pen.22165

    Article  CAS  Google Scholar 

  5. Wang XL, Huang FY, Zhou Y, Wang YZ (2009) Nonisothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Physics 48:710–722. doi:10.1080/00222340902959420

    Article  CAS  Google Scholar 

  6. Wang GS, Wei ZY, Sanga L, Chen GY, Zhang WX, Dong XF, Qi M (2013) Morphology, crystallization and mechanical properties of poly(ε-caprolactone)/graphene oxide nanocomposties. Chin J Polym Sci 31:1148–1160. doi:10.1007/s10118-013-1278-8

    Article  Google Scholar 

  7. Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater Lett 65:729–732. doi:10.1016/j.matlet.2010.11.029

    Article  CAS  Google Scholar 

  8. Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci, Part B: Polym Phys 45:3137–3147. doi:10.1002/polb.21309

    Article  CAS  Google Scholar 

  9. Liu Q, Chen D (2008) Viscoelastic behaviors of poly(ε-caprolactone)/attapulgite nanocomposites. Eur Polym J 44:2046–2050. doi:10.1016/j.eurpolymj.2008.04.035

    Article  CAS  Google Scholar 

  10. Zhuravlev E, Wurma A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ε-caprolactone)—multiwalled carbon nanotube composites. Europ Polym J 52:1–11. doi:10.1016/j.eurpolymj.2013.12.015

    Article  CAS  Google Scholar 

  11. Luduena LN, Vazquez A, Alvarez AV (2013) Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci 128:2648–2657. doi:10.1002/app.38425

    Article  CAS  Google Scholar 

  12. Hua L, Kai W, Inoue Y (2007) Crystallization behavior of poly(ε-caprolactone)/graphite oxide composites J Appl Polym Sci 106:4225–4232. doi:10.1002/app.26976

  13. Gupta KK, Kundan A, Mishra PK, Srivastava P, Mohanty S, Singh NK, Mishrad A, Maiti P (2012) Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Phys Chem Chem Phys 14:12844–12853. doi:10.1039/c2cp41789h

    Article  CAS  Google Scholar 

  14. Králová D, Neykova N, Šlouf M (2008) Preparation of titanate nanotubes and their polymer composites. In: Richter S, Schwedt A (eds) EMC 2008, vol 2., Materials ScienceSpringer, Berlin, pp 765–766. doi: 10.1007/978-3-540-85226-1_1

  15. Králová D, Šlouf M, Klementová M, Kužel R, Kelnar I (2010) Preparation of gram quantities of high-quality titanate nanotubes and their composites with polyamide 6. Mater Chem Phys 124:652–657. doi:10.1016/j.matchemphys.2010.07.029

    Article  Google Scholar 

  16. Šlouf M, Králová D, Kruliš Z (2010) Nanotrubky na bázi oxidu titaničitého a způsob jejich přípravy (in Czech). CZ 302299, Czech Patent

  17. Saeed K, Park S-Y (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104:1957–1963. doi:10.1002/app.25902

    Article  CAS  Google Scholar 

  18. Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Kratochvíl J, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71:795–818. doi:10.1007/s00289-013-1093-y

    Article  Google Scholar 

  19. NiS-Elements Ar (2012) User manual version 4.10.03, Laboratory imaging, Prague. http://www.laboratory-imaging.com

  20. Boughorbel F, Zhuge X, Potocek P, Lich B (2012) SEM 3D reconstruction of stained bulk samples using landing energy variation and deconvolution. Microsc Microanal 18:560–561. doi:10.1017/S1431927612004655

    Article  Google Scholar 

  21. Avrami M (1939) Kinetics of phase change. I. J Chem Phys 7:1103–1112. doi:10.1063/1.1750380

    Article  CAS  Google Scholar 

  22. Avrami M (1940) Kinetics of phase change. II. Ibid. J Chem Phys 8:212–224. doi:10.1063/1.1750631

    Article  CAS  Google Scholar 

  23. Avrami M (1941) Kinetics of phase change. III. Ibid. J Chem Phys 9:177–184. doi:10.1063/1.1750872

    Article  CAS  Google Scholar 

  24. Schultz JM (2001) Polymer crystallization. The development of crystalline order in thermoplastic polymer. Oxford University Press, New York

    Google Scholar 

  25. Guo Q, Groenincky G (2001) Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer 42:8647–8655. doi:10.1016/S0032-3861(01)00348-2

    Article  CAS  Google Scholar 

  26. Delgado-Lima A, Botelho G, Silva MM, Machado AV (2013) Durability of PCL nanocomposites under different environments. J Polym Environ 21:710–717. doi:10.1007/s10924-013-0585-z

    Article  CAS  Google Scholar 

  27. Muñoz-Bonilla A, Cerrada ML, Fernández-García M, Kubacka A, Ferrer M, Fernández-García M (2013) Biodegradable polycaprolactone-titania nanocomposites: preparation, characterization and antimicrobial properties. Int J Mol Sci 14:9249–9266. doi:10.3390/ijms14059249

    Article  Google Scholar 

  28. Wang G, Chen G, Wei Z, Yu T, Liu L, Wang P, Chang Y, Qi M (2012) A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(ε-caprolactone) nanocomposites. J Appl Polym Sci 125:3871–3879. doi:10.1002/app.36720

    Article  CAS  Google Scholar 

  29. Sperling LH (1992) Introduction to physical polymer science. John Wiley & Sons, London, pp 232–235

    Google Scholar 

  30. Slouf M, Krejcikova S, Vackova T, Kratochvil J, Novak L (2015) In situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites. Front Mater 2:23. doi:10.3389/fmats.2015.00023

    Article  Google Scholar 

  31. Slouf M, Vackova T, Zhigunov A, Sikora A, Piorkowska E (2016) Nucleation of polypropylene crystallization with gold nanoparticles. Part 2: relation between particle morphology and nucleation activity. J Macromol Sci, Phys 55:393–410. doi:10.1080/00222348.2016.1153402

    Article  CAS  Google Scholar 

  32. Mandelkern L, Quinn FA, Flory PJ (1954) Crystallization kinetics in high polymers. I. Bulk polymers. J Appl Phys 25:830–839. doi:10.1063/1.1721753

    Article  CAS  Google Scholar 

  33. Kratochvíl J, Kelnar I (2015) A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polym Test 47:79–86. doi:10.1016/j.polymertesting.2015.07.010

    Article  Google Scholar 

  34. Mezger TG (2014) The rheology handbook, 4th edn. Vincentz network, Hanover, Germany, p 116

    Google Scholar 

  35. Balta-Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge, pp 80–125

    Book  Google Scholar 

  36. Balta-Calleja FJ (1985) Microhardness relating to crystalline polymers. Adv Polym Sci 66:117–148

    Article  CAS  Google Scholar 

  37. Slouf M, Vackova T, Nevoralova M, Pokorny D (2015) Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym Test 41:191–197. doi:10.1016/j.polymertesting.2014.12.003

    Article  CAS  Google Scholar 

  38. Lednický F, Šlouf M, Kratochvíl J, Baldrian J, Novotná D (2007) Crystalline character and microhardness of gamma-irradiated and thermally treated UHMWPE. J Macromol Sci, Phys 46:521–531. doi:10.1080/00222340701257778

    Article  Google Scholar 

  39. Gedde UW (1995) Crystalline polymers. In: Gedde UW (ed) Polymer physics, 1st edn. Chapman & Hall, London, pp 131–168

    Google Scholar 

  40. Struik LCE (1991) Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J Non-Cryst Solids 131–133:395–407. doi:10.1016/0022-3093(91)90333-2

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for the financial support of the Czech Science Foundation (Project No. GA 14-17921S). Electron microscopy at the Institute of Macromolecular Chemistry was supported by projects TE01020118 (Technology Agency of the CR) and POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I). The authors would like to thank to Tomáš Vystavěl from FEI Company for advanced SEM study (Fig. 3b, c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Slouf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacková, T., Kratochvíl, J., Ostafinska, A. et al. Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles. Polym. Bull. 74, 445–464 (2017). https://doi.org/10.1007/s00289-016-1723-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1723-2

Keywords

Navigation