Skip to main content
Log in

Influence of the chemical functionalization of titanium oxide nanotubes on the non-isothermal crystallization of polypropylene nanocomposites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface of titanium oxide nanotubes (TiNTs) was chemically modified after synthesis to determine their influence on the non-isothermal crystallization of polypropylene nanocomposites compared to pristine titanium oxide nanotube-reinforced systems. Pimelic acid (PA) was used to carry out the chemical functionalization (TiNT-PA). The FTIR spectrum revealed that PA successfully bound to the TiNT surface due to the appearance of new vibrational bands at 29834, 2868, 1578, and 1407 cm−1. After the functionalization process, the morphology of TiNT remained unchanged according to TEM images. In addition, the new filler showed high thermal stability when subjected to TGA (between 320 and 450 °C). DSC studies were carried out to investigate the influence of this chemical functionalization on the crystallization behavior of the nanocomposites. The nanocomposites with the modified TiNTs showed more significant shifts of the crystallization temperature peaks with large heterogeneous nucleation. According to Jeziorny's analysis, the effect of fillers was only observed for the functionalized nanotubes with the lowest crystallization times, while the systems with pristine TiNT practically remained the same. This behavior is attributable to the fact that the acid's presence reduced agglomeration and improved the efficiency of the nucleation activity. Mo's model results confirmed that the heat flux requirements of the crystallization process were lower for the nanocomposites reinforced with TiNT-PA as they act better as heterogeneous nuclei. Then, they provide the surface area to serve as a nucleation center and help crystallize the polypropylene due to the aliphatic chain of the organic molecule.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sekino T (2010) Synthesis and applications of titanium oxide nanotubes. Inorganic and metallic nanotubular materials. Springer, Berlin, Heidelberg, pp 17–32

    Chapter  Google Scholar 

  2. Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71(4):795–818

    Article  Google Scholar 

  3. Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58(1):179–191

    Article  CAS  Google Scholar 

  4. Plodinec M, Gajović A, Iveković D, Tomašić N, Zimmermann B, Macan J, Willinger M (2014) Study of thermal stability of (3-aminopropyl) trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers. Nanotechnol 25(43):435601

    Article  Google Scholar 

  5. Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K (2013) A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos A Appl Sci Manuf 49:1–8

    Article  CAS  Google Scholar 

  6. Maier C, Calafut T (1998) Polypropylene: the definitive user’s guide and databook. William Andrew, Newyork, USA

    Google Scholar 

  7. Nelson JK (2007) Overview of nanodielectrics: insulating materials of the future. 2007 Electrical insulation conference and electrical manufacturing expo. IEEE, New Jersey, USA, pp 229–235

    Chapter  Google Scholar 

  8. Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8(5):173

    Article  Google Scholar 

  9. Han, J., & Garrett, R. (2008). Overview of polymer nanocomposites as dielectrics and electrical insulation materials for large high voltage rotating machines. In: NSTI-Nanotech, vol 2, 727–732

  10. Matthews FL, Rawlings RD (1999) Composite materials: engineering and science. CRC Press

    Google Scholar 

  11. Yoshida R, Suzuki Y, Yoshikawa S (2005) Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes. Mater Chem Phys 91:409–416

    Article  CAS  Google Scholar 

  12. Morgado E Jr, de Abreu MA, Moure GT, Marinkovic BA, Jardim PM, Araujo AS (2007) Effects of thermal treatment of nanostructured trititanates on their crystallographic and textural properties. Mater Res Bull 42(9):1748–1760

    Article  CAS  Google Scholar 

  13. Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Inhibition of polyimide photodegradation by incorporation of titanate nanotubes into a composite. J Polym Environ 27(7):1505–1515

    Article  CAS  Google Scholar 

  14. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163

    Article  CAS  Google Scholar 

  15. Ma Y, Lin Y, Xiao X, Zhou X, Li X (2006) Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors. Mater Res Bull 41(2):237–243

    Article  CAS  Google Scholar 

  16. Viriya-empikul N, Charinpanitkul T, Sano N, Soottitantawat A, Kikuchi T, Faungnawakij K, Tanthapanichakoon W (2009) Effect of preparation variables on morphology and anatase–brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures. Mater Chem Phys 118(1):254–258

    Article  CAS  Google Scholar 

  17. Zhu Y, Li H, Koltypin Y, Hacohen YR, Gedanken A (2001) Sonochemical synthesis of titania whiskers and nanotubes. Chem Commun 24:2616–2617

    Article  Google Scholar 

  18. Anastacio-López ZS, Gonzalez-Calderon JA, Saldivar-Guerrero R, Velasco-Santos C, Martínez-Hernández AL, Fierro-González JC, Almendárez-Camarillo A (2019) Modification of graphene oxide to induce beta crystals in isotactic polypropylene. J Mater Sci 54:427–443. https://doi.org/10.1007/s10853-018-2866-3

    Article  CAS  Google Scholar 

  19. Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A (2015) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci 50:1457–1468. https://doi.org/10.1007/s10853-014-8706-1

    Article  CAS  Google Scholar 

  20. Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A (2015) Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci 50:7998–8006. https://doi.org/10.1007/s10853-015-9365-6

    Article  CAS  Google Scholar 

  21. Mendoza G, Peña-Juárez MG, Gonzalez-Calderon JA, Perez E (2020) Use of chemically modified titanium dioxide particles to mediate the non-isothermal cold crystallization of poly (latic acid). J Mex Chem Soc 64(2):117–136

    Google Scholar 

  22. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19(10):1142–1144

    Article  CAS  Google Scholar 

  23. Liu T, Mo Z, Zhang H (1998) Non-isothermal crystallization behavior of a novel poly (aryl ether ketone): PEDEKmK. J Appl Polym Sci 67(5):815–821

    Article  CAS  Google Scholar 

  24. Wang J, Dou Q (2007) Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Part B Phys 46(5):987–1001

    Article  CAS  Google Scholar 

  25. Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In: Journal of polymer science part C: polymer symposia, New York: Wiley Subscription Services, Inc., A Wiley Company, 6(1): 183–195

  26. Liang GG, Cook WD, Tcharkhtchi A, Sautereau H (2011) Epoxy as a reactive plasticizer for improving polycarbonate processibility. Eur Polymer J 47(8):1578–1588

    Article  CAS  Google Scholar 

  27. Bavykin DV, Kulak AN, Shvalagin VV, Andryushina NS, Stroyuk OL (2011) Photocatalytic properties of rutile nanoparticles obtained via low temperature route from titanate nanotubes. J Photochem Photobiol, A Chem 218(2–3):231–238

    Article  CAS  Google Scholar 

  28. Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9(10):2229–2238

    Article  CAS  Google Scholar 

  29. Mitra T, Sailakshmi G, Gnanamani A, Mandal AB (2013) The effect of pimelic acid interaction on the mechanical and thermal properties of chitosan and collagen. Int J Polym Mater Polym Biomater 62(11):572–582

    Article  CAS  Google Scholar 

  30. Shi L, Cao L, Gao R, Zhao Y, Zhang H, Xia C (2014) Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis. J Alloy Compd 617:756–762

    Article  CAS  Google Scholar 

  31. Rendón-Rivera A, Toledo-Antonio JA, Cortés-Jácome MA, Angeles-Chávez C (2011) Generation of highly reactive OH groups at the surface of TiO2 nanotubes. Catal Today 166(1):18–24

    Article  Google Scholar 

  32. Sarceviča I, Kons A, Orola L (2016) Isoniazid cocrystallisation with dicarboxylic acids: vapochemical, mechanochemical and thermal methods. CrystEngComm 18(9):1625–1635

    Article  Google Scholar 

  33. Karunanithi AT, Acquah C, Achenie LE, Sithambaram S, Suib SL (2009) Solvent design for crystallization of carboxylic acids. Comput Chem Eng 33(5):1014–1021

    Article  CAS  Google Scholar 

  34. Muniyappan S, Solaiyammal T, Sudhakar K, Karthigeyan A, Murugakoothan P (2017) Conventional hydrothermal synthesis of titanate nanotubes: systematic discussions on structural, optical, thermal and morphological properties. Mod Electron Mater 3(4):174–178

    Article  Google Scholar 

  35. Ding Q, Zhang Z, Wang C, Jiang J, Li G, Mai K (2012) Crystallization behavior and melting characteristics of wollastonite filled β-isotactic polypropylene composites. Thermochim Acta 536:47–54

    Article  CAS  Google Scholar 

  36. Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R (2007) Non-isothermal melt-crystallization and mechanical properties of titanium (IV) oxide nanoparticle-filled isotactic polypropylene. Polym Testing 26(1):20–37

    Article  CAS  Google Scholar 

  37. Ma W, Wang X, Zhang J (2011) Crystallization kinetics of poly (vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim 103(1):319–327

    Article  CAS  Google Scholar 

  38. Sánchez MS, Ribelles JG, Sánchez FH, Mano JF (2005) On the kinetics of melting and crystallization of poly (l-lactic acid) by TMDSC. Thermochim Acta 430(1–2):201–210

    Article  Google Scholar 

  39. Esthappan SK, Kuttappan SK, Joseph R (2012) Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des 37:537–542

    Article  CAS  Google Scholar 

  40. Marco C, Gómez MA, Ellis G, Arribas JM (2002) Highly efficient nucleating additive for isotactic polypropylene studied by differential scanning calorimetry. J Appl Polym Sci 84(9):1669–1679

    Article  CAS  Google Scholar 

  41. González-Calderón JA, Peña-Juárez M, Zarraga R, Contreras-López D, Vallejo-Montesinos J (2021) The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana De Ingeniería Química 20(1):435–452

    Article  Google Scholar 

  42. Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139

    Article  CAS  Google Scholar 

  43. Coburn N, Douglas P, Kaya D, Gupta J, McNally T (2018) Isothermal and non-isothermal crystallization kinetics of composites of poly (propylene) and MWCNTs. Adv Ind Eng Polym Res 1(1):99–110

    Google Scholar 

  44. Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly (propylene suberate). Thermochim Acta 523(1–2):187–199

    Article  CAS  Google Scholar 

  45. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int 53(2):176–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by TecNM in Celaya (Project No. 10737.21-P). Armando Almendarez Camarillo thanks the TecNM for allowing him to take a sabbatical year for this research. J.A. Gonzalez-Calderon thanks to CONACYT for the support by the Catedras-Conacyt Program. The authors acknowledge Claudia Hernández for her support during the XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Almendarez-Camarillo.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Calderon, J.A., Fierro-Gonzalez, J.C., Peña-Juarez, M.G. et al. Influence of the chemical functionalization of titanium oxide nanotubes on the non-isothermal crystallization of polypropylene nanocomposites. J Mater Sci 57, 5855–5872 (2022). https://doi.org/10.1007/s10853-022-07009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07009-x

Navigation