Skip to main content
Log in

Adsorption of Cu(II) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel adsorbent, biodegradable Konjac glucomannan-poly(acrylic acid) (KGMP) hydrogel, is prepared by Konjac glucomannan grafting with acrylic acid. The adsorption properties of the KGMP for Cu(II) ion removal from aqueous solutions are investigated. The experiments are performed under various impact factors such as initial Cu(II) ion concentration, pH, contact time, temperature and salt ionic strength. The Langmuir and Freundlich isotherm are employed to discuss the adsorption behavior. The result shows the equilibrium data obtained at different temperatures are represented perfectly by Langmuir isotherm model compared to the Freundlich isotherm models. The monolayer saturation adsorption capacities of KGMP for Cu(II) ion is found to be 27.1739, 30.2115, 34.1297 and 41.6667 mg g−1 at 298, 303, 308 and 313 K, respectively. Thermodynamic parameters such as ΔG, ΔH and ΔS are calculated. The kinetics studies show that adsorption process follows the pseudo-second-order model and the adsorption process is mainly controlled by both surface reactivity and intra-particle diffusion. FT-IR analysis shows that a large number of carbonyl, ester, and hydroxyl groups are included in the external surface of the KGMP, SEM indicates that the rough, irregular and pores of different size and shapes on surfaces of the KGMP are observed before adsorption. The present study indicates that the KGMP is an effective adsorbent for the removal of Cu(II) ion from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Repo E, Warchoł JK, Bhatnagar A, Sillanpää M (2011) Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J Colloid Interface Sci 358:261–267. doi:10.1016/j.jcis.2011.02.059

    Article  CAS  Google Scholar 

  2. Yang W, Ding P, Zhou L, Yu J, Chen X, Jiao F (2013) Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Appl Surf Sci 282:38–45. doi:10.1016/j.apsusc.2013.05.028

    Article  CAS  Google Scholar 

  3. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  4. Periasamy K, Namasivayam C (1996) Removal of copper (II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere 32:769–789. doi:10.1016/0045-6535(95)00332-0

    Article  CAS  Google Scholar 

  5. Jiang J, Xu R, Jiang T, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150. doi:10.1016/j.jhazmat.2012.05.086

    Article  Google Scholar 

  6. Liu Y, Chen M, Yongmei H (2013) Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles. Chem Eng J 218:46–54. doi:10.1016/j.cej.2012.12.027

    Article  CAS  Google Scholar 

  7. Ngah WSW, Teong LC, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83:1446–1456. doi:10.1016/j.carbpol.2010.11.004

    Article  Google Scholar 

  8. Jing G, Wang L, Yu H, Amer WA, Zhang L (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloid Surf A 416:86–94. doi:10.1016/j.colsurfa.2012.09.043

    Article  Google Scholar 

  9. Abdel-Halim ES, Al-Deyab SS (2014) Preparation of poly (acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React Funct Polym 75:1–8. doi:10.1016/j.reactfunctpolym.2013.12.003

    Article  CAS  Google Scholar 

  10. Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394. doi:10.1016/j.seppur.2013.11.025

    Article  CAS  Google Scholar 

  11. Tian D, Xie HQ (2008) Synthesis and flocculation characteristics of Konjac glucomannan-g-polyacrylamide. Polym Bull 61:277–285. doi:10.1007/s00289-008-0950-6

    Article  CAS  Google Scholar 

  12. Xia B, Ha W, Meng XW, Govender T, Peng SL, Ding LS, Li BJ, Zhang S (2010) Preparation and characterization of a poly (ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohyd polym 79:648–654. doi:10.1016/j.carbpol.2009.09.014

    Article  CAS  Google Scholar 

  13. Chen J, Zhang W, Li X (2015) Preparation and characterization of a novel superabsorbent of konjac glucomannan-poly (acrylic acid) with trimethylolpropane trimethacrylate cross-linker. RSC Adv 5:38417–38423. doi:10.1039/C5RA04522C

    Article  CAS  Google Scholar 

  14. Xu C, Luo X, Lin X, Zhuo X, Liang L (2009) Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends. Polymer 50:3698–3705. doi:10.1016/j.polymer.2009.06.007

    Article  CAS  Google Scholar 

  15. Wen X, Cao X, Yin Z, Wang T, Zhao C (2009) Preparation and characterization of konjac glucomannan–poly (acrylic acid) IPN hydrogels for controlled release. Carbohyd Polym 78:193–198. doi:10.1016/j.carbpol.2009.04.001

    Article  CAS  Google Scholar 

  16. Xu DY, Li GJ, Liao ZF, He X (2009) Preparation and in vitro controlled release behavior of a novel pH-sensitive drug carrier for colon delivery. Polym Bull 62:183–193. doi:10.1007/s00289-008-0012-0

    Article  CAS  Google Scholar 

  17. Marcano J, Hernando I, Fiszman S (2015) In vitro measurements of intragastric rheological properties and their relationships with the potential satiating capacity of cheese pies with konjac glucomannan. Food Hydrocolloid 51:16–22. doi:10.1016/j.foodhyd.2015.04.028

    Article  CAS  Google Scholar 

  18. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloid Surf B 113:223–229. doi:10.1016/j.colsurfb.2013.09.009

    Article  CAS  Google Scholar 

  19. Ramesh A, Hasegawa H, Sugimoto W, Maki T, Ueda K (2008) Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresource Technol 99:3801–3809. doi:10.1016/j.biortech.2007.07.008

    Article  CAS  Google Scholar 

  20. Zhang C, Han B, Yao X, Pang L, Luo X (2013) Synthesis of konjac glucomannan phthalate as a new biosorbent for copper ion removal. J Polym Res 20:1–14. doi:10.1007/s10965-012-0034-z

    Google Scholar 

  21. Tong X, Li J, Yuan J, Xu R (2011) Adsorption of Cu (II) by biochars generated from three crop straws. Chem Eng J 172:828–834. doi:10.1016/j.cej.2011.06.069

    Article  CAS  Google Scholar 

  22. Bagheri M, Azizian S, Jaleh B, Chehregani A (2014) Adsorption of Cu (II) from aqueous solution by micro-structured ZnO thin films. J Ind Eng Chem 20:2439–2446. doi:10.1016/j.jiec.2013.10.024

    Article  CAS  Google Scholar 

  23. Wu XW, Ma HW, Zhang LT, Wang FJ (2012) Adsorption properties and mechanism of mesoporous adsorbents prepared with fly ash for removal of Cu(II) in aqueous solution. Appl Surf Sci 261:902–907. doi:10.1016/j.apsusc.2012.08.122

    Article  CAS  Google Scholar 

  24. Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage 96:35–42. doi:10.1016/j.jenvman.2011.10.010

    Article  CAS  Google Scholar 

  25. Shahtalebi A, Sarrafzadeh MH, McKay G (2013) An adsorption diffusion model for removal of copper (II) from aqueous solution by pyrolytic tyre char. Desalin Water Treat 51:5664–5673. doi:10.1080/19443994.2013.769659

    Article  CAS  Google Scholar 

  26. Kosa SA, Al-Zhrani G, Salam MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181:159–168. doi:10.1016/j.cej.2011.11.044

    Article  Google Scholar 

  27. Roosen J, Spooren J, Binnemans K (2014) Adsorption performance of functionalized chitosan–silica hybrid materials toward rare earths. J Mater Chem A 2:19415–19426. doi:10.1039/C4TA04518A

    Article  CAS  Google Scholar 

  28. Reza RA, Ahmaruzzaman M, Sil AK, Gupta VK (2014) Comparative adsorption behavior of ibuprofen and clofibric acid onto microwave assisted activated bamboo waste. Ind Eng Chem Res 53:9331–9339. doi:10.1021/ie404162p

    Article  CAS  Google Scholar 

  29. Torres E, Mera R, Herrero C, Abalde J (2014) Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity. Environ Sci Pollut R 21:12616–12628. doi:10.1007/s11356-014-3207-y

    Article  CAS  Google Scholar 

  30. Milosavljević N, Debeljković A, Krušić MK, Milašinović N, Üzüm ÖB, Karadağ E (2014) Application of poly (acrylamide-co-sodium methacrylate) hydrogels in copper and cadmium removal from aqueous solution. Environ Prog Sustain 33:824–834. doi:10.1002/ep.11854

    Article  Google Scholar 

  31. Hui B, Zhang Y, Ye L (2014) Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chem Eng J 235:207–214. doi:10.1016/j.cej.2013.09.045

    Article  CAS  Google Scholar 

  32. Orozco-Guareño E, Santiago-Gutiérrez F, Morán-Quiroz JL, Hernandez-Olmosa SL, Sotoa V, Cruzc W, Manríquezd R, Gomez-Salazarb S (2010) Removal of Cu (II) ions from aqueous streams using poly (acrylic acid-co-acrylamide) hydrogels. J Colloid Interf Sci 349:583–593. doi:10.1016/j.jcis.2010.05.048

    Article  Google Scholar 

  33. Moradi O, Aghaie M, Zare K, Monajjemi M, Aghaie H (2009) The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P (MMA-HEMA) surfaces from aqueous single solution. J Hazard Mater 170:673–679. doi:10.1016/j.jhazmat.2009.05.012

    Article  CAS  Google Scholar 

  34. Denizli A, Özkan G, Arica MY (2000) Preparation and characterization of magnetic polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu (II), Cd (II), Pb(II), and Hg(II) from aqueous solutions. J Appl Polym Sci 78:81–89. doi:10.1002/1097-4628(20001003)78:1<81:AID-APP110>3.0.CO;2-J

    Article  CAS  Google Scholar 

  35. Coşkun R, Soykan C, Saçak M (2006) Removal of some heavy metal ions from aqueous solution by adsorption using poly (ethylene terephthalate)-g-itaconic acid/acrylamide fiber. React Funct Polym 66:599–608. doi:10.1016/j.reactfunctpolym.2005.10.012

    Article  Google Scholar 

  36. Caykara T, Inam R (2013) Determination of the competitive adsorption of heavy metal ions on poly (n-vinyl-2-pyrrolidone/acrylic acid) hydrogels by differential pulse polarography. J Appl Polym Sci 89:2013–2018. doi:10.1002/app.12328

    Article  Google Scholar 

  37. Pekel N, Güven O (2004) Separation of heavy metal ions by complexation on poly (N-vinyl imidazole) hydrogels. Polym Bull 51:307–314. doi:10.1007/s00289-004-0224-x

    Article  CAS  Google Scholar 

  38. Wang X, Chung YS, Lyoo WS, Min BG (2006) Preparation and properties of chitosan/poly (vinyl alcohol) blend foams for copper adsorption. Polym Int 55:1230–1235. doi:10.1002/pi.2068

    Article  CAS  Google Scholar 

  39. Zhu Q, Li Z (2015) Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water. Chem Eng J 281:69–80. doi:10.1016/j.cej.2015.06.068

    Article  CAS  Google Scholar 

  40. Lai K, Zhou W, Jiang L, Li M (2011) Study on copper (II) adsorption by sodium polyacrylate in wastewater. In: 2011 international symposium on water resource and environmental protection (ISWREP), Xi'an, 20–22 May 2011, vol 2. IEEE, pp 1187–1190. doi:10.1109/ISWREP.2011.5893227

Download references

Acknowledgments

The Project was supported by Leading Project of Science and Technology in Fujian Province (2015H0019) and Natural Science Foundation of Zhangzhou city, China (ZZ2014J05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, W. & Li, X. Adsorption of Cu(II) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan. Polym. Bull. 73, 1965–1984 (2016). https://doi.org/10.1007/s00289-015-1588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1588-9

Keywords

Navigation