Skip to main content
Log in

Facile fabrication of high capacity citric acid cross-linked chitosan and carboxymethyl cellulose-based hydrogel for fast kinetics removal of Cu(II)

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption is the most efficient technique for the removal of toxic organic dyes and metal ions from wastewater and it demands efficient, low-cost, environment friendly and collectable adsorbents. In this study, a one-pot strategy has been developed for the crosslinking of chitosan and carboxymethyl cellulose with citric acid to form the cross-linked hydrogel. The synthesized biosorbent hydrogel was characterized by FTIR, XRD and SEM that have confirmed the successful crosslinking. The batch adsorption experiments were performed to examine the capacity of hydrogel for the adsorption of Cu(II). The optimization of the adsorption process was carried out on the basis of various factors including; metal ion concentration, time, temperature, pH, agitation speed and adsorbent dose. Different isothermal and kinetic models were applied to interpret the data. The thermodynamic studies revealed that Langmuir model was the best fit with > 90% Cu(II) removal at pH 6. The kinetic studies confirmed the suitability of pseudo-second-order kinetics with correlation coefficient (R2) value 1. Several adsorption–desorption cycles were performed to check the recovery and reusability of hydrogel without the loss of maximum adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

These will be provided on request.

References

  1. Benhalima, T., et al.: Fe3O4 imbuing carboxymethyl cellulose/dextran sulfate nanocomposite hydrogel beads: an effective adsorbent for methylene blue dye pollutant. J. Macromol. Sci. A 60, 442 (2023)

    Article  CAS  Google Scholar 

  2. Gunasundari, E.: Adsorption isotherm, kinetics and thermodynamic analysis of Cu (II) ions onto the dried algal biomass (Spirulina platensis). J. Ind. Eng. Chem. 56, 129–144 (2017)

    Article  CAS  Google Scholar 

  3. Benhalima, T., Ferfera-Harrar, H.: Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue. Int. J. Biol. Macromol. 132, 126–141 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. Benhalima, T., Ferfera-Harrar, H., Lerari, D.: Optimization of carboxymethyl cellulose hydrogels beads generated by an anionic surfactant micelle templating for cationic dye uptake: swelling, sorption and reusability studies. Int. J. Biol. Macromol. 105, 1025–1042 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Saravanan, A., Senthil Kumar, P., Mugilan, R.: Ultrasonic-assisted activated biomass (fishtail palm Caryota urens seeds) for the sequestration of copper ions from wastewater. Res. Chem. Intermed. 42, 3117–3146 (2016)

    Article  CAS  Google Scholar 

  6. Pearlin Kiruba, U., et al.: Study of adsorption kinetic, mechanism, isotherm, thermodynamic, and design models for Cu (II) ions on sulfuric acid-modified Eucalyptus seeds: temperature effect. Desalin. Water Treat. 56(11), 2948–2965 (2015)

    CAS  Google Scholar 

  7. Prabu, D., et al.: Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalin. Water Treat. 57(14), 6487–6502 (2016)

    Article  CAS  Google Scholar 

  8. Neeraj, G., et al.: Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J. Mol. Liq. 214, 335–346 (2016)

    Article  CAS  Google Scholar 

  9. Sandstead, H.H.: Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am. J. Clin. Nutr. 61(3), 621S-624S (1995)

    Article  CAS  PubMed  Google Scholar 

  10. Prabu, D., et al.: Sorption of Cu (II) ions by nano-scale zero valent iron supported on rubber seed shell. IET Nanobiotechnol. 11(6), 714–724 (2017)

    Article  PubMed Central  Google Scholar 

  11. Senthil Kumar, P., et al.: Study of adsorption of Cu (II) ions from aqueous solution by surface-modified Eucalyptus globulus seeds in a fixed-bed column: experimental optimization and mathematical modeling. Res. Chem. Intermed. 41, 8681–8698 (2015)

    Article  CAS  Google Scholar 

  12. Liu, Y., et al.: Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H 2 O 2. Environ. Sci. Water Res. Technol. 1(6), 769–778 (2015)

    Article  CAS  Google Scholar 

  13. Zhang, H., et al.: Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials. Nucl. Eng. Des. 275, 322–328 (2014)

    Article  CAS  Google Scholar 

  14. Alyüz, B., Veli, S.: Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 167(1–3), 482–488 (2009)

    Article  PubMed  Google Scholar 

  15. Ostroski, I.C., et al.: A comparative study for the ion exchange of Fe (III) and Zn (II) on zeolite NaY. J. Hazard. Mater. 161(2–3), 1404–1412 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Cabello, S.P., et al.: New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. J. Power. Sources 265, 345–355 (2014)

    Article  Google Scholar 

  17. Zeng, M., et al.: Highly biocompatible, underwater superhydrophilic and multifunctional biopolymer membrane for efficient oil–water separation and aqueous pollutant removal. ACS Sustain. Chem. Eng. 6(3), 3879–3887 (2018)

    Article  CAS  Google Scholar 

  18. Kaksonen, A.H., Riekkola-Vanhanen, M.-L., Puhakka, J.: Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 37(2), 255–266 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Maturi, K., Reddy, K.R.: Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere 63(6), 1022–1031 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Ni, B.-J., et al.: Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219, 351–357 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Park, J.-H., et al.: Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77–83 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Liang, W., et al.: Decontamination of Hg (II) from aqueous solution using polyamine-co-thiourea inarched chitosan gel derivatives. Int. J. Biol. Macromol. 113, 106–115 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. Li, R., et al.: High-efficiency removal of Pb (II) and humate by a CeO2–MoS2 hybrid magnetic biochar. Biores. Technol. 273, 335–340 (2019)

    Article  CAS  Google Scholar 

  24. Saravanan, A., Kumar, P.S., Yaswanthraj, M.: Modeling and analysis of a packed-bed column for the effective removal of zinc from aqueous solution using dual surface-modified biomass. Part. Sci. Technol. 36(8), 934–944 (2018)

    Article  CAS  Google Scholar 

  25. Kumar, P.S., et al.: Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261(1–2), 52–60 (2010)

    Article  Google Scholar 

  26. Akhlaq, M., et al.: A comparative study of different methods for cellulose extraction from lignocellulosic wastes and conversion into carboxymethyl cellulose. ChemistrySelect 7(29), e202201533 (2022)

    Article  CAS  Google Scholar 

  27. Ahmad, M., et al.: Thiocarbohydrazide cross-linked oxidized chitosan and poly (vinyl alcohol): a green framework as efficient Cu (II), Pb (II), and Hg (II) adsorbent. J. Chem. Eng. Data 62(7), 2044–2055 (2017)

    Article  CAS  Google Scholar 

  28. Li, N., Bai, R., Liu, C.: Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization. Langmuir 21(25), 11780–11787 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Yan, H., et al.: Enhanced and selective adsorption of copper (II) ions on surface carboxymethylated chitosan hydrogel beads. Chem. Eng. J. 174(2–3), 586–594 (2011)

    Article  CAS  Google Scholar 

  30. Wu, S.-P., et al.: Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin. Chem. Lett. 28(3), 625–632 (2017)

    Article  Google Scholar 

  31. Manzoor, K., et al.: Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu (II) ion adsorbent. ACS Omega 4(17), 17425–17437 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Allen, C.L., Chhatwal, A.R., Williams, J.M.: Direct amide formation from unactivated carboxylic acids and amines. Chem. Commun. 48(5), 666–668 (2012)

    Article  CAS  Google Scholar 

  33. Akhlaq, M., et al.: Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC Adv. 13(9), 5723–5743 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tangpasuthadol, V., Pongchaisirikul, N., Hoven, V.P.: Surface modification of chitosan films: effects of hydrophobicity on protein adsorption. Carbohy. Res. 338(9), 937–942 (2003)

    Article  CAS  Google Scholar 

  35. Akhlaq, M., Uroos, M.: Evaluating the impact of cellulose extraction via traditional and ionosolv pretreatments from domestic matchstick waste on the properties of carboxymethyl cellulose. ACS Omega 8(9), 8722–8731 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gorochovceva, N., Makuška, R.: Synthesis and study of water-soluble chitosan-O-poly (ethylene glycol) graft copolymers. Eur. Polymer J. 40(4), 685–691 (2004)

    Article  CAS  Google Scholar 

  37. Fujita, S., Sakairi, N.: Water soluble EDTA-linked chitosan as a zwitterionic flocculant for pH sensitive removal of Cu (II) ion. RSC Adv. 6(13), 10385–10392 (2016)

    Article  CAS  Google Scholar 

  38. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  CAS  Google Scholar 

  39. Christoforidis, A., et al.: Study of Cu (II) removal by Cystoseira crinitophylla biomass in batch and continuous flow biosorption. Chem. Eng. J. 277, 334–340 (2015)

    Article  CAS  Google Scholar 

  40. Gupta, S.S., Bhattacharyya, K.G.: Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manage. 87(1), 46–58 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Yang, S., et al.: Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166(1), 109–116 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, S., et al.: Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite. Desalination 270(1–3), 269–274 (2011)

    Article  CAS  Google Scholar 

  43. Yagub, M.T., et al.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Coll. Interface. Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

  44. Yao, Z.-Y., Qi, J.-H., Wang, L.-H.: Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell. J. Hazard. Mater. 174(1–3), 137–143 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. Al-Othman, Z.A., Ali, R., Naushad, M.: Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 184, 238–247 (2012)

    Article  CAS  Google Scholar 

  46. McKay, G.: Adsorption of dyestuffs from aqueous solutions with activated carbon I: equilibrium and batch contact-time studies. J. Chem. Technol. Biotechnol. 32(7–12), 759–772 (1982)

    Article  CAS  Google Scholar 

  47. Rahman, N., Haseen, U.: Equilibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb (II) by a hybrid inorganic–organic material: polyacrylamide zirconium (IV) iodate. Ind. Eng. Chem. Res. 53(19), 8198–8207 (2014)

    Article  CAS  Google Scholar 

  48. Horsfall Jnr, M., Spiff, A.I.: Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron. J. Biotechnol. 8(2), 43–50 (2005)

    Article  Google Scholar 

  49. Juang, R.-S., Shao, H.-J.: Effect of pH on competitive adsorption of Cu (II), Ni (II), and Zn (II) from water onto chitosan beads. Adsorption 8, 71–78 (2002)

    Article  CAS  Google Scholar 

  50. He, J., Lu, Y., Luo, G.: Ca (II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb (II) from aqueous solutions. Chem. Eng. J. 244, 202–208 (2014)

    Article  CAS  Google Scholar 

  51. Saha, D., et al.: Noncompetitive and competitive adsorption of heavy metals in sulfur-functionalized ordered mesoporous carbon. ACS Appl. Mater. Interfaces 8(49), 34132–34142 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Tan, I., Ahmad, A., Hameed, B.: Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164(2–3), 473–482 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Higher Education Commission of Pakistan is acknowledged for providing funding through TDF03-294 and HEC/NRPU-8639. University of the Punjab is acknowledged for its support towards these projects.

Author information

Authors and Affiliations

Authors

Contributions

MA did the experimental work and writing, SN helped in kinetic, isothermal and thermodynamic studies and data validation. MU supervised the work.

Corresponding author

Correspondence to Maliha Uroos.

Ethics declarations

Competing interests

Authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhlaq, M., Naz, S. & Uroos, M. Facile fabrication of high capacity citric acid cross-linked chitosan and carboxymethyl cellulose-based hydrogel for fast kinetics removal of Cu(II). Adsorption 30, 363–375 (2024). https://doi.org/10.1007/s10450-024-00446-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-024-00446-x

Keywords

Navigation