Skip to main content
Log in

Isobutylalumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Isobutylalumoxanes have been obtained by hydrolysis of triisobutylaluminium (TIBA) with water in the form of vapour (1) or ice particles (2) at AlTIBA/H2O = 2 mol/mol. 1H NMR spectra of hydrolyzates showed the presence of unreacted TIBA indicating the formation of alumoxanes larger than iBu2Al-O-AliBu2 which one can expect based on the molar ratio of reagents. Alumoxanes 1 and 2 demonstrate high activating ability for rac-Et(2-MeInd)2ZrMe2 in copolymerization reactions of ethylene with propylene and terpolymerization of ethylene with propylene and 5-ethylidene-2-norbornene. Alumoxane 1 demonstrates high structural and chemical stability during long-term storage (for 1 year) that results in consistent activating ability and similarity of molecular weight characteristics of polymer formed. Alumoxane 2 is much less structurally stable which is manifested in considerable changes of 1H NMR spectra of the product even after several days of storage. It essentially loses activating ability after 3 months’ storage. The alumoxanes with high activating ability have been also obtained by in situ TIBA hydrolysis with water intentionally incorporated into toluene (~1 × 10−2 mol/l) prior to polymerization also at AlTIBA/H2O = 2 mol/mol. The differences of catalytic systems with different activators are also reflected in differences in microstructure, molecular-weight, thermal-physical characteristics and physical-mechanical properties of copolymers formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Noordermeer JWM (2005) Ethylene–propylene polymers. In: Kirk-Othmer (ed) Encyclopedia of chemical technology, vol 10. Wiley, Hoboken, pp 704–719

  2. Bhowmick KA, Stephens HL (eds) (2001) Handbook of elastomers, 2 edn. Marcel Decker, Inc., New York

  3. Kissin YV (2008) Alkene polymerization reactions with transition metal catalysts 1 (studies in surface science and catalysis, vol 173). Elsevier, Amsterdam

    Google Scholar 

  4. Galimberti M, Guerra G (2007) Influence of tacticity of propylene placement on structure and properties of ethylene/propylene copolymers. In: Baugh LS, Canich JAM (eds) Stereoselective polymerization with single-site catalysts. CRC Press Taylor&Francis Group, New York, pp 313–344

    Chapter  Google Scholar 

  5. Hagen H, Boersma J, Van Koten G (2002) Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins. Chem Soc Rev 31:357–364

    Article  CAS  Google Scholar 

  6. Kaminsky W, Miri M (1985) Ethylene propylene diene terpolymers produced with a homogeneous and highly active zirconium catalyst. J Polym Sci Part A Polym Chem 23:2151–2164

    Article  CAS  Google Scholar 

  7. Chien JCW, He DJ (1991) Olefin copolymerization with metallocene catalysts. I. Comparison of catalysts. J Polym Sci Part A Polym Chem 29:1585–1593

    Article  CAS  Google Scholar 

  8. Soga K, Uozumi T (1992) Copolymerization of olefins with Kaminsky–Sinn-type catalysts. Makromol Chem 193:823–831

    Article  Google Scholar 

  9. Koivumäki J, Seppälä JV (1993) Comparison of ethylene-propylene copolymers obtained with Ti, V and Zr catalyst systems. Polym Bull 31:441–448

    Article  Google Scholar 

  10. Lehtinen C, Löfgren B (1997) A comparison of (n-butCp), ZrClz and other simple metallocenes with bridged Et(Ind)2ZrCl2 and Me2Si(Ind)2ZrCl2 catalysts in ethene/propene copolymerization. Eur Polym J 33:115–120

    Article  CAS  Google Scholar 

  11. Walter P, Trinkle S, Mülhaupt R (2001) Influence of zirconocene structure and propene intent on melt rheology of polyethene and ethene/propene copolymers. Polym Bull 46:205–213

    Article  CAS  Google Scholar 

  12. Kravchenko R, Waymouth RM (1998) Ethylene propylene copolymerization with 2-arylindene zirconocenes. Macromolecules 31:1–6

    Article  CAS  Google Scholar 

  13. Ahmadjo S, Arabi H, Nekoomanesh M, Zohuri GH, Mortazavi MM, Naderi G (2010) Terpolymerization of ethylene/propylene/diene monomers using (2-PhInd)2ZrCl2 metallocene catalysts. Macromol React Eng 4:707–714

    Article  CAS  Google Scholar 

  14. Arabi H, Mobarakeh HS, Balzadeh Z, Nejabat G-R (2013) Copolymerization of ethylene/5-ethylidene-2-norbornene with bis (2-phenylindenyl) zirconium dichloride catalyst: I. Optimization of the operating conditions by response surface methodology. J Appl Polym Sci 129:3047–3053

    Article  CAS  Google Scholar 

  15. Tsai WM, Chien JCW (1994) Silolene-bridged zirconocenium polymerization catalysts. J Polym Sci Part A Polym Chem 32:149–158

    Article  CAS  Google Scholar 

  16. Yu Z, Marques M, Rausch M, Chien JCW (1995) Olefin terpolymerizations. III. Symmetry, sterics, and monomer structure in ansa-zirconocenium catalysis of EPDM synthesis. J Polym Sci Part A Polym Chem 33:2795–2801

    Article  CAS  Google Scholar 

  17. Malmberg A, Löfgren B (1997) The production of ethene/propene/5-ethylidene-2-norbornene terpolymers using metallocene catalysts: polymerization, characterization and properties of the metallocene EPDM. J Appl Polym Sci 66:35–44

    Article  CAS  Google Scholar 

  18. Starck P, Lehtinen C, Löfgren B (1997) Polymerization and characterization of ethylene/propylene and ethylene/1-octene copolymers produced with bridged Zr- and Hf-based metallocenes. Angew Makromol Chem 249:115–135

    Article  CAS  Google Scholar 

  19. Chien JCW, Yu Z, Marques MM, Flores JC, Rausch MD (1998) Polymerizations of olefins and diolefins catalyzed by monocyclopentadienyltitanium complexes containing a (dimethylamino)ethyl substituent and comparison with ansa-zirconocene systems. J Polym Sci Part A Polym Chem 36:319–328

    Article  CAS  Google Scholar 

  20. Haag MC, Dos Santos JHZ, Stedile FC, Dupont J (1999) Residual metal content in ethylene-propylene-diene monomers synthesized using vanadium- and zirconocene-based catalysts. J Appl Polym Sci 74:1997–2003

    Article  CAS  Google Scholar 

  21. Lu L, Niu H, Dong J-Y, Zhao X, Hu X (2010) Ethylene/propylene copolymerization over three conventional C2-symmetric metallocene catalysts: correlation between catalyst configuration and copolymer microstructure. J Appl Polym Sci 118:3218–3226

    Article  CAS  Google Scholar 

  22. Huang Y, Fu Z, Gu X, Feng L, Fan Z (2013) Terpolymerization of ethylene/propylene/5-ethylidene-2-norbornene using rac-Et(Ind)(2)ZrCl2 and modified-methylaluminoxane metallocene catalyst system. J Polym Mater 30:145–157

    CAS  Google Scholar 

  23. Kaminsky W (2001) New elastomers by metallocene catalysis. Macromol Symp 174:269–276

    Article  CAS  Google Scholar 

  24. Arndt M, Kaminsky W, Schauwienold A-M, Weingarten U (1998) Ethene/propene copolymerisation by [Me2C(3-RCp)(Flu)]ZrCl2/MAO (R = H, Me, isoPr, tertBu). Macromol Chem Phys 199:1135–1152

    Article  CAS  Google Scholar 

  25. Fan W, Leclerc MR, Waymouth RM (2001) Alternating stereospecific copolymerization of ethylene and propylene with metallocene catalysts. J Am Chem Soc 123:9555–9563

    Article  CAS  Google Scholar 

  26. Starzewski AO, Steinhauser N, Xin BS (2008) Decisive progress in metallocene-catalyzed elastomer synthesis. Macromolecules 41:4095–4101

    Article  Google Scholar 

  27. Chen EY-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure−activity relationships. Chem Rev 100:1391–1434

    Article  CAS  Google Scholar 

  28. Harlan CJ, Mason MR, Barron AR (1994) tert-Butylaluminum hydroxides and oxides: structural relationship between alkylalumoxanes and alumina gels. Organometallics 13:2957–2969

    Article  CAS  Google Scholar 

  29. Harlan CJ, Bott SG, Barron AR (1995) Three-coordinate aluminum is not a prerequisite for catalytic activity in the zirconocene–alumoxane polymerization of ethylene. J Am Chem Soc 117:6465–6474

    Article  CAS  Google Scholar 

  30. Dall’Occo T, Galimberti M, Camurati I, Destro M, Fusco O, Brita D (1999) Alumoxanes alternative to MAO: synthesis and characterization. In: Kaminsky W (ed) Metalorganic catalysts for synthesis and polymerization. Springer, Berlin, pp 142–149

    Chapter  Google Scholar 

  31. Tritto I, Zucchi D, Destro M, Sacchi MC, Dall’Occo T, Galimberti M (2000) NMR investigations of the reactivity between zirconocenes and β-alkyl-substituted aluminoxanes. J Mol Catal A Chem 160:107–114

    Article  CAS  Google Scholar 

  32. Galimberti M, Destro M, Fusco O, Piemontesi F, Camurati I (1999) Ethene/propene copolymerization from metallocene-based catalytic systems: role of the alumoxane. Macromolecules 32:258–263

    Article  CAS  Google Scholar 

  33. Resconi L, Giannini U, Dall’Occo (2000) MAO-free metallocene catalysts for ethylene (co)polymerization. In: Scheirs J, Kaminsky W (eds) Metallocene-based polyolefins: preparation, properties, and technology. Wiley, Chichester, pp 69–74

    Google Scholar 

  34. Polo E, Galimberti M, Mascellani N, Fusco O, Müller G, Sostera S (2000) Ethene/propene copolymerisations with rac-EBTHIZrR2/alumoxane: σ-ligands effect. J Mol Catal A Chem 160:229–236

    Article  CAS  Google Scholar 

  35. Tritto I, Boggioni L, Sacchi MC, Dall’Occo T (2003) Novel aluminum based cocatalysts for metallocene catalyzed olefin polymerization. J Mol Catal A Chem 204–205:305–314

    Article  Google Scholar 

  36. Mason MR, Smith JM, Bott SG, Barron AR (1993) Hydrolysis of tri-tert-butylaluminum: the first structural characterization of alkylalumoxanes.[(R2A1)20]n and (RA1O)n. J Am Chem Soc 115:4971–4984

    Article  CAS  Google Scholar 

  37. Razuvaev GA, Sangalov YuA, Nelkenbaum Yu, Ya Minsker KS (1975) Synthesis of alumoxanes by reactions of organoaluminum compounds with copper sulfate crystallohydrate. Izv Akad Nauk, Ser Khim, pp 2434–2440

    Google Scholar 

  38. Bravaya NM, Faingol’d EE, Babkina ON, Saratovskikh SL, Panin AN, Zharkov IV, Fushman EA (2013) Syntheses of isobutylalumoxanes by triisobutylaluminum hydrolysis and their use as activators of dimethylated zirconocene in propylene polymerization. Rus Chem Bul 62:560–567

    Article  CAS  Google Scholar 

  39. Bolesławski M, Serwatowski J (1983) Synthesis and structure of alkylaluminoxanes. J Organomet Chem 254:159–166

    Article  Google Scholar 

  40. Samuel E, Rausch MD (1973) π-Cyclopentadienyl and π-indenyl compounds of Titanium, Zirconium, and Hafnium Containing σ-bonded organic substituents. J Am Chem Soc 95:6263–6267

    Article  CAS  Google Scholar 

  41. Smith GM, Rogers JS, Malpass DB (1998) In: Proceedings of MetCon ‘98, USA, PA, June 10–11, 1998

  42. Zyabina VA, Korobova LM, Lifshits IA, Novikova NN, Nel’son KV (1972) Determination of ethylenenorbornene in ethylene, propylene, and ethylidenenorbornene copolymers by means of IR spectroscopy. Zhurnal Prikl Spectroskopii 17:1048–1051

    CAS  Google Scholar 

  43. Neely BJ, Wagner J, Robinson RL Jr, Gasem KAM (2008) Mutual solubility measurements of hydrocarbon–water systems containing benzene, toluene, and 3-methylpentane. J Chem Eng Data 53:165–174

    Article  CAS  Google Scholar 

  44. Kolbert AC, Didier JC (1999) Determination of monomer sequence distribution in EPDM by 13C-NMR: third monomer effects. J Appl Polym Sci 71:523–530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Russian Sciences Foundation (Grant 13-03-01011 a and 13-03-12181 ofi_m) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia M. Bravaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravaya, N.M., Panin, A.N., Faingol’d, E.E. et al. Isobutylalumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene. Polym. Bull. 73, 473–491 (2016). https://doi.org/10.1007/s00289-015-1505-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1505-2

Keywords

Navigation