Skip to main content
Log in

A new route to polymeric materials derived from chitosan and natural rubber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, the synthesis and characterization of a new polymer, natural rubber-g-chitosan, from biopolymers available in nature is reported. In this process, soft and amorphous natural rubber (NR) is converted into a relatively more dimensionally stable new polymer (glass transition temperature changes from −68 to +94.5 °C), with versatile solubility in a variety of common organic solvents. For this purpose, mild epoxidation of NR is carried out to provide a reactive handle for the grafting of chitosan. Thus, chitosan-grafted natural rubber with different chitosan loading have been synthesized and characterized. The characterization of the new polymers revealed that the grafting process resulted in enhanced glass transition temperature in comparison to NR, remarkable improvement in thermal stability in comparison to NR and chitosan and the much needed solubility for the chitosan component, which is otherwise insoluble in common organic solvents. The NR-g-chitosan is fully amorphous in the solid state, similar to NR. These value-added characteristics promise the utility and processability of the newly synthesized materials in adhesives, packaging industries and in many other areas where natural rubber and chitosan are vitally employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. (2011) Biodegradable Plastics Market: by Types (Starch, PLA, PHA, PCL, and PBS), Applications, Regulations, Prices, Trends & Forecast (2011–2016), Markets and Markets, 361

  2. Gent AN (2005) Rubber elasticity: basic concepts and behavior. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber, 3rd edn. Elsevier Academic Press, Burlington, p 2

    Google Scholar 

  3. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  4. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  CAS  Google Scholar 

  5. Gandini A (2004) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  Google Scholar 

  6. Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwaand H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  7. Liu C, Shao Y, Jia D (2008) Chemically modified starch reinforced natural rubber composites. Polymer 49:2176–2181

    Article  CAS  Google Scholar 

  8. Bras J, Hassan ML, Bruzesse C, Hassan E, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  9. Bhatt R, Shah D, Patel KC, Trivedi U (2008) PHA–rubber blends: synthesis, characterization and biodegradation. Bioresour Technol 99:4615–4620

    Article  CAS  Google Scholar 

  10. Chang YW, Eom JP, Kim JG, Kim HT, Kim DK (2010) Preparation and characterization of shape memory polymer networks based on carboxylated telechelic poly(ε-caprolactone)/epoxidized natural rubber blends. J Ind Eng Chem 16:256–260

    Article  CAS  Google Scholar 

  11. Da Cruz AGB, Goes JC, Figueir SD, Feitosa JPA, Ricardo NMPS, Sombra ASB (2003) On the piezoelectricity of collagen/natural rubber blend films. Eur Polym J 39:1267–1272

    Article  Google Scholar 

  12. Bitinis N, Verdejo R, Cassagnau P, Manchado MAL (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  13. Parulekar Y, Mohanty AK (2006) Biodegradable toughened polymers from renewable resources: blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene. Green Chem 8:206–213

    Article  CAS  Google Scholar 

  14. Amnuaypanicha S, Patthanaa J, Phinyocheep P (2009) Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. Chem Eng Sci 64:4908–4918

    Article  Google Scholar 

  15. Minnath MA, Unnikrishnan G, Purushothaman E (2011) Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J Membr Sci 379:361–369

    Article  Google Scholar 

  16. Lertwattanaseri T, Ichikawa N, Mizoguchi T, Tanaka Y, Chirachanchai S (2009) Epoxidized natural rubber bionanocomposite: a model case of bionanocomposite using nanofibrous chitosan and its consequent functional properties. Chem Lett 38:798–799

    Article  CAS  Google Scholar 

  17. Johns J, Rao V (2009) Mechanical properties and swelling behaviour of cross-linked natural rubber/chitosan blends. Int J Polym Anal Charact 14:508–526

    Article  CAS  Google Scholar 

  18. Nair KG, Dufresne A (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4:835–1842

    Article  Google Scholar 

  19. Ismail H, Shaari SM, Othman N (2011) The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym Test 30:784–790

    Article  CAS  Google Scholar 

  20. Johns J, Nakason C (2011) Dielectric properties of natural rubber/chitosan blends: effects of blend ratio and compatibilization. J Non Cryst Solids 357:1816–1821

    Article  CAS  Google Scholar 

  21. Riyajan S-A, Sukhlaaied W (2013) Effect of chitosan content on gel content of epoxidized natural rubber grafted with chitosan in latex form. Mater Sci Eng C 33:1041–1047

    Article  CAS  Google Scholar 

  22. Mas Haris MRH, Raju G (2014) Preparation and characterization of biopolymers comprising chitosan-grafted-ENR via acid-induced reaction of ENR50 with chitosan. Express Polym Lett 8:85–94

    Article  Google Scholar 

  23. Ravindra R, Krovvidi KR, Khan AA (1998) Solubility parameter of chitin and chitosan. Carbohydr Polym 36:121–127

    Article  CAS  Google Scholar 

  24. Gelling IR (1991) Epoxidised natural rubber. J Nat Rubber Res 6:184–205

    CAS  Google Scholar 

  25. Othmer DF, Ku PL (1960) Solubility data for ternary liquid systems acetic acid and formic acid distributed between chloroform and water. J Chem Eng Data 5:42–44

    Article  CAS  Google Scholar 

  26. Sarvari MH, Sharghi H (2008) Sulfamic acid catalyzed ring opening of epoxides with amines under solvent-free conditions. J Iran Chem Soc 5:384–393

    Article  Google Scholar 

  27. Ng SC, Gan LH (1981) Reaction of natural rubber latex with performic acid. Eur Polym J 17:1073–1077

    Article  CAS  Google Scholar 

  28. Abu Bakar NHH, Ismail J, Abu Bakar M (2010) Silver nanoparticles in polyvinylpyrrolidone grafted natural rubber. React Funct Polym 70:168–174

    Article  CAS  Google Scholar 

  29. Liu D, Wei Y, Yao P, Jiang L (2006) Determination of the degree of acetylation of chitosan by UV spectrophotometry using dual standards. Carbohydr Res 341:782–785

    Article  CAS  Google Scholar 

  30. Tian F, Liu Y, Hu K, Zhao B (2003) The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci 38:4709–4712

    Article  CAS  Google Scholar 

  31. Enescu D, Hamciuc V, Pricop L, Hamaide T, Harabagiu L, Simionescu VJ (2009) Polydimethylsiloxane-modified chitosan I. Synthesis and structural characterisation of graft and crosslinked copolymers. Polym Res 16:73–80

    Article  CAS  Google Scholar 

  32. Sabnis S, Block LH (1997) Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polym Bull 39:67–71

    Article  CAS  Google Scholar 

  33. Mivehi L, Bahrami SH, Malek RMA (2008) Properties of polyacrylonitrile-N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride blend films and fibers. J Appl Polym Sci 109:545–554

    Article  CAS  Google Scholar 

  34. Aziz SB, Abidin ZHZ (2013) Electrical conduction mechanism in solid polymer electrolytes: new concepts to Arrhenius equation. J Soft Matter 8:323868-1–323868-8. doi:10.1155/2013/323868

    Google Scholar 

  35. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283

    Article  CAS  Google Scholar 

  36. Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer 41:7051–7056

    Article  CAS  Google Scholar 

  37. Gelling IR (1985) Modification of natural rubber latex with peracetic acid. Rubber Chem Technol 58:86–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank IIT Madras for financial support. Prof. R. Dhamodharan thanks IIT Madras for the grant of sabbatical leave that enabled the pursuit of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavachari Dhamodharan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatanarasimhan, S., Dhamodharan, R. A new route to polymeric materials derived from chitosan and natural rubber. Polym. Bull. 72, 2311–2330 (2015). https://doi.org/10.1007/s00289-015-1403-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1403-7

Keywords

Navigation