Skip to main content
Log in

Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research work, a zirconocene/MAO complex was used as a catalyst for the copolymerization of 1-hexene and ethylene in the presence of nano titania doped with 1 % of manganese (TiO2/Mn), which was used as a drop in filler. It was investigated from the 13C NMR analysis that 1-hexene incorporation increases with the addition of nano filler. The degree of crystallinity (DOC), catalytic activity and molecular weight of the nanocomposites were studied by a differential scanning calorimeter (DSC), yield analysis and gel permeation chromatography (GPC), respectively. It was found that DOC, catalytic activity, molecular weight and molecular weight distribution were strongly influenced by the addition of nano filler due to the increase of 1-hexene incorporation. As a result, an increase in catalytic activity and a decrease in DOC were observed due to the addition of nano filler. The non-isothermal crystallization kinetics of the produced copolymer was studied using a model proposed by Ozawa and Mo et al. It was observed that the crystal growth rate is slowed by the nano filler. The activation energy (E A) was determined by the Kissinger method, and it was found that E A is increased incrementally with the loadings of the nano filler, confirming a slower crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer (Guildf) 47:1267–1280. doi:10.1016/j.polymer.2005.12.039

    Article  CAS  Google Scholar 

  2. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalt Trans 1413–1418. doi:10.1039/A800056E

  3. Kaminsky W, Piel C, Scharlach K (2005) Polymerization of ethene and longer chained olefins by metallocene catalysis. Macromol Symp 226:25–34. doi:10.1002/masy.200550803

    Article  CAS  Google Scholar 

  4. Kaminsky W, Funck A, Klinke C (2008) In-situ polymerization of olefins on nanoparticles or fibers by metallocene catalysts. Top Catal 48:84–90. doi:10.1007/s11244-008-9044-9

    Article  CAS  Google Scholar 

  5. Choi Y, Soares JBP (2012) Supported single-site catalysts for slurry and gas-phase olefin polymerisation. Can J Chem Eng 90:646–671. doi:10.1002/cjce.20583

    Article  CAS  Google Scholar 

  6. Fónagy T, Schulze U, Komber H et al (2007) Poly(propylene-g-styrene) graft copolymers with well-defined microstructure by metallocene catalyzed copolymerization of propylene with allyl-terminated polystyrene macromonomers. Macromolecules 40:1401–1407. doi:10.1021/ma062511x

    Article  Google Scholar 

  7. Wang H, Ma Z, Ke Y, Hu Y (2003) Synthesis of linear low density polyethylene (LLDPE) by in situ copolymerization with novel cobalt and zirconium catalysts. Polym Int 52:1546–1552. doi:10.1002/pi.1282

    Article  CAS  Google Scholar 

  8. Pérez O, Soares JBP, García M et al (2013) Heterogeneous ethylene and alpha-olefin copolymerization using zirconocene aluminohydride complexes. Macromol Symp 325–326:71–76. doi:10.1002/masy.201200041

    Article  Google Scholar 

  9. Wang Z, Wang X, Xie G et al (2006) Preparation and characterization of polyethylene/TiO2 nanocomposites. Compos Interfaces 13:623–632. doi:10.1163/156855406778440730

    Article  CAS  Google Scholar 

  10. Abdul Kaleel SH, Kottukkal Bahuleyan B, De SK et al (2012) Effect of Mn doped-titania on the activity of metallocene catalyst by in-situ ethylene polymerization. J Ind Eng Chem 18:1836–1840. doi:10.1016/j.jiec.2012.04.010

    Article  CAS  Google Scholar 

  11. Jordan J, Jacob KI, Tannenbaum R et al (2005) Experimental trends in polymer nanocomposites a review. Mater Sci Eng A 393:1–11. doi:10.1016/j.msea.2004.09.044

    Article  Google Scholar 

  12. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957. doi:10.1021/cr068035q

    Article  CAS  Google Scholar 

  13. Li K-T, Dai C-L, Kuo C-W (2007) Ethylene polymerization over a nano-sized silica supported Cp2ZrCl2/MAO catalyst. Catal Commun 8:1209–1213. doi:10.1016/j.catcom.2006.11.011

    Article  CAS  Google Scholar 

  14. Chaichana E, Pathomsap S, Mekasuwandumrong O et al (2012) LLDPE/TiO2 nanocomposites produced from different crystallite sizes of TiO2 via in situ polymerization. Chin Sci Bull 57:2177–2184. doi:10.1007/s11434-012-5021-6

    Article  CAS  Google Scholar 

  15. Wang Z, Li G, Xie G, Zhang Z (2005) Dispersion behavior of TiO2 nanoparticles in LLDPE/LDPE/TiO2 nanocomposites. Macromol Chem Phys 206:258–262. doi:10.1002/macp.200400309

    Article  CAS  Google Scholar 

  16. Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723. doi:10.1002/app.34633

    Article  CAS  Google Scholar 

  17. Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater Chem Phys 90:185–195. doi:10.1016/j.matchemphys.2004.10.009

    Article  CAS  Google Scholar 

  18. Jongsomjit B, Panpranot J (2006) Characteristics of LLDPE/ZrO2 nanocomposite synthesized by in-situ polymerization using a zirconocene/MAO catalyst. Iran Polym J 15:433–439

    CAS  Google Scholar 

  19. Sagmeister M, Brossmann U, List EJW et al (2009) Synthesis and optical properties of organic semiconductor: zirconia nanocomposites. J Nanoparticle Res 12:2541–2551. doi:10.1007/s11051-009-9823-7

    Article  Google Scholar 

  20. Patel R (2012) Crystallization kinetics modeling of high density and linear low density polyethylene resins. J Appl Polym Sci. doi:10.1002/app.35177

    Google Scholar 

  21. Shi Y-H, Dou Q (2012) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112:901–911. doi:10.1007/s10973-012-2611-0

    Article  Google Scholar 

  22. Pucciariello R, Villani V, Giammarino G (2010) Thermal behaviour of nanocomposites based on linear-low-density poly(ethylene) and carbon nanotubes prepared by high energy ball milling. J Polym Res 18:949–956. doi:10.1007/s10965-010-9494-1

    Article  Google Scholar 

  23. Lee S, Kim M, Ogale A (2007) Crystallization behavior of carbon nanofiber/linear low density polyethylene nanocomposites. J Appl Polym Sci 106:2605–2614. doi:10.1002/app.26800

    Article  CAS  Google Scholar 

  24. Liu T, Mo Z, Wang S, Zhang H (1997) Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci 37:568–575. doi:10.1002/pen.11700

    Article  CAS  Google Scholar 

  25. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103. doi:10.1063/1.1750380

    Article  CAS  Google Scholar 

  26. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer (Guildf) 19:1142–1144. doi:10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  27. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer (Guildf) 12:150–158. doi:10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  28. De Pooter M, Smith P (1991) Determination of the composition of common linear low density polyethylene copolymers by 13C NMR spectroscopy. J Appl Polym Sci 42:399–408. doi:10.1002/app.1991.070420212

    Article  CAS  Google Scholar 

  29. Sarzotti DM, Soares JBP, Penlidis A (2002) Ethylene/1-hexene copolymers synthesized with a single-site catalyst: crystallization analysis fractionation, modeling, and reactivity ratio estimation. J Polym Sci Part B Polym Phys 40:2595–2611. doi:10.1002/polb.10339

    Article  CAS  Google Scholar 

  30. Owpradit W, Jongsomjit B (2008) A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst. Mater Chem Phys 112:954–961. doi:10.1016/j.matchemphys.2008.07.050

    Article  CAS  Google Scholar 

  31. Severn JR, Chadwick JC, Duchateau R, Friederichs N (2005) “Bound but not gagged” immobilizing single-site alpha-olefin polymerization catalysts. Chem Rev 105:4073–4147. doi:10.1021/cr040670d

    Article  CAS  Google Scholar 

  32. Chaichana E, Jongsomjit B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in-situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905. doi:10.1016/j.ces.2006.10.005

    Article  CAS  Google Scholar 

  33. Macko T, Schulze U, Brüll R et al (2008) Monitoring the chemical heterogeneity and the crystallization behavior of PP-g-PS graft copolymers using SEC–FTIR and CRYSTAF. Macromol Chem Phys 209:404–409. doi:10.1002/macp.200700398

    Article  CAS  Google Scholar 

  34. Bruaseth I, Rytter E (2003) Dual site ethene/1-hexene copolymerization with MAO activated polymer chains between the sites. Macro 36:3026–3034. doi:10.1021/ma025832r

    Article  Google Scholar 

  35. Zhang Z, Xiao C, Dong Z (2007) Comparison of the Ozawa and modified Avrami models of polymer crystallization under nonisothermal conditions using a computer simulation method. Thermochim Acta 466:22–28. doi:10.1016/j.tca.2007.10.004

    Article  CAS  Google Scholar 

  36. Shehzad F, Thomas SP, Al-Harthi MA (2014) Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in situ polymerization. Thermochim Acta 589:226–234. doi:10.1016/j.tca.2014.05.039

    Article  CAS  Google Scholar 

  37. Apiwanthanakorn N, Supaphol P, Nithitanakul M (2004) Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate). Polym Test 23:817–826. doi:10.1016/j.polymertesting.2004.03.001

    Article  CAS  Google Scholar 

  38. Ozawa T (1970) Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim 2:301–324. doi:10.1007/BF01911411

    Article  CAS  Google Scholar 

  39. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer (Guildf) 45:4953–4968. doi:10.1016/j.polymer.2004.04.057

    Article  CAS  Google Scholar 

  40. Kissinger H (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706. doi:10.1021/ac60131a045

    Article  CAS  Google Scholar 

  41. Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48. doi:10.1016/j.tca.2012.11.025

    Article  CAS  Google Scholar 

  42. Jiasheng Q, Pingsheng H (2003) Non-isothermal crystallization of HDPE/nano-SiO2 composite. J Mater Sci 38:2299–2304. doi:10.1023/A:1023968026684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, M., Shehzad, F. & Al-Harthi, M.A. Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym. Bull. 72, 1233–1245 (2015). https://doi.org/10.1007/s00289-015-1335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1335-2

Keywords

Navigation