Skip to main content
Log in

Thermal behaviour of nanocomposites based on linear-low-density poly(ethylene) and carbon nanotubes prepared by high energy ball milling

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The thermal behaviour of nanocomposites of linear-low-density-poly(ethylene) (LLDPE) and carbon nanotubes (CNT), prepared by the method of High Energy Ball Milling (HEBM) has been in-depth investigated. The CNT affect the nucleation of LLDPE, in that they act as nucleating agents for LLDPE. Moreover, as it is shown by self-nucleation experiments, in the presence of CNT a direct transition from domain I to domain III, with lack of domain II takes place. Isothermal experiments show that the crystallization rate of the nanocomposites is much higher than that of neat LLDPE. It is worthy noting that such effect is very high even for low contents of CNT in the sample (i.e. 1% by weight), then additions of CNT do not have any further effect. Lastly, the dynamic-mechanical properties of LLDPE are slightly modified in the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Ajayan PM, Zhou OZ (2000) Carbon nanotubes: synthesis, structure, properties, and applications. Springer-Verlag, Berlin

    Google Scholar 

  3. Saito R, Dresselhaus G, Dresselhaus M (1999) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  4. Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (1999) Chem Phys Lett 319:460

    Article  Google Scholar 

  5. Files BS, Mayeaux BM (1999) Adv Mater Process 156:47

    CAS  Google Scholar 

  6. Kearns JC, Shambaugh RL (2000) J Appl Polym Sci 86:2079

    Article  Google Scholar 

  7. Safadi B, Andrews R, Grulke EA (2002) J Appl Polym Sci 84:2660

    Article  CAS  Google Scholar 

  8. Wang Y, Cheng R, Liang L, Wang Y (2005) Compos Sci Technol 65:793

    Article  CAS  Google Scholar 

  9. Tong X, Liu C, Cheng H, Zhao H, Yang F, Zhang X (2004) J Appl Polym Sci 92:3697

    Article  CAS  Google Scholar 

  10. Celzard A, McRae E, Furdin G, Marêché JF (1997) J Phys Condens Matter 9:2225

    Article  CAS  Google Scholar 

  11. Sarno M, Gorrasi G, Sannino D, Sorrentino A, Vittoria V, Ciambelli P (2004) Macromol Rapid Commun 25:1963

    Article  CAS  Google Scholar 

  12. Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) J Mater Chem 13:491

    Article  CAS  Google Scholar 

  13. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Polymer 45:4227

    Article  CAS  Google Scholar 

  14. Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2002) J Mater Sci 37:3915

    Article  CAS  Google Scholar 

  15. Potschke P, Formes TD, Paul DR (2002) Polymer 43:3247

    Article  CAS  Google Scholar 

  16. Andrews R, Jacques D, Minot M, Rantell T (2002) Micromol Mater Eng 287:395

    Article  CAS  Google Scholar 

  17. Benoit JM, Corraze B, Chauvet O (2002) Phys Rev B 65:241405

    Article  Google Scholar 

  18. He XJ, Du JH, Ying Z, Cheng HM, He XJ (2002) Appl Phys Lett 86:062112

    Article  Google Scholar 

  19. Cashell EM, Cohey JMD, Wardell GE, Mc Brierty VJ, Douglass DC (1981) J Appl Phys 52:1542

    Article  CAS  Google Scholar 

  20. Awasthi K, Srivastava A, Srivastava ON (2005) J Nanosci Nanotechnol 5:1616

    Article  CAS  Google Scholar 

  21. Thostenson ET, Zhifeng R, Chan TW (2001) Compos Sci Technol 61:1899

    Article  CAS  Google Scholar 

  22. Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hange RH, Smalley RE (2003) Nano Lett 3:285

    Google Scholar 

  23. Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Beguin F, Blau W (2004) J Nano Lett 4:353

    Article  CAS  Google Scholar 

  24. Chattjee T, Yurekli K, Hadjiev VG, Khrisnamoorti R (2005) Adv Funct Mater 15:1832

    Article  Google Scholar 

  25. Gorrasi G, Sarno M, Sannino D, Ciambelli P, Vittoria V (2007) J Polym Sci B Polym Phys 45:597

    Article  CAS  Google Scholar 

  26. Jin Z, Pramoda KP, Goh SH, Xu G (2002) Mater Res Bull 37:2711

    Article  Google Scholar 

  27. Shaw WJD (1998) Mater Sci Forum 19:269

    Google Scholar 

  28. Wunderlich B (1976) Macromolecular physics. Crystal nucleation. Growth, annealing. Academic, New York

    Google Scholar 

  29. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  30. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  31. Avrami M (1941) J Chem Phys 9:177

    Article  CAS  Google Scholar 

  32. Muller AJ, Arnal ML (2005) Prog Polym Sci 30:559

    Article  Google Scholar 

  33. Grady BP, Pompeo F, Shambaug RL, Resasco DE (2002) J Phys Chem B 106:5852

    Article  CAS  Google Scholar 

  34. Haggenmueller R, Fischer JE, Winey KI (2006) Macromolecules 39:2964

    Article  CAS  Google Scholar 

  35. Advanced Thermal Analysis System (ATHAS), Wunderlich B (1995) Pure Appl Chem 67:1919, available on the web at: http://www.utk.edu/athas

    Article  Google Scholar 

  36. Trujillo M, Arnal ML, Muller AJ, Laredo E, Bredau St, Bonduel D, Dubois Ph, Hamley IW, Castelletto V (2008) Macromolecules 41:2087

    Article  CAS  Google Scholar 

  37. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) J Polym Sci B Polym Phys 31:1383

    Article  CAS  Google Scholar 

  38. McCrum NG, Buckley CP, Bucknall CB (1988) Principles of polymer engineering. Oxford University Press

Download references

Acknowledgements

We acknowledge Prof. Vittoria Vittoria and her group at University of Salerno for the kind gift of the samples used throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachele Pucciariello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucciariello, R., Villani, V. & Giammarino, G. Thermal behaviour of nanocomposites based on linear-low-density poly(ethylene) and carbon nanotubes prepared by high energy ball milling. J Polym Res 18, 949–956 (2011). https://doi.org/10.1007/s10965-010-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9494-1

Keywords

Navigation