Advertisement

Polymer Bulletin

, Volume 71, Issue 5, pp 1205–1217 | Cite as

Structural stability of photodegradable poly(l-lactic acid)/PE/TiO2 nanocomposites through TiO2 nanospheres and TiO2 nanotubes incorporation

  • Kacris Idianês Matos da Silva
  • Jesum Alves Fernandes
  • Emerson Cristofer Kohlrausch
  • Jairton Dupont
  • Marcos José Leite SantosEmail author
  • Marcelo Priebe GilEmail author
Original Paper

Abstract

Photodegradation of PLA/PE, PLA/PE/TiO2 nanospheres and PLA/PE/TiO2 nanotubes was obtained under simulated sunlight. The nanocomposites were analyzed by infrared spectroscopy, scanning electron microscopy and tensile-deformation measurements. TiO2 nanospheres and TiO2 nanotubes were found to present different effects on the crystallinity of PLA and a straight correlation between structural organization and photostability was observed. According to the results, TiO2 promotes the degradation of PLA and PE, affecting the organizational level of the polymers. By adding TiO2 nanoparticles to the PLA/PE films, vibration modes characteristic of degradation products were promptly observed and the lifetime of the polymer decreased when compared to the PLA/PE without TiO2 nanoparticles. Mechanical measurements showed an improvement of the mechanical properties when adding the TiO2 nanoparticles.

Keywords

Photodegradation Polylactic acid Polyethylene Nanocomposite TiO2 

References

  1. 1.
    Grigoriadou I, Paraskevopoulos KM, Chrissafis K, Pavlidou E, Stamkopoulos T-G, Bikiaris D (2011) Effect of different nanoparticles on HDPE UV stability. Polym Degrad Stab 96:151–163CrossRefGoogle Scholar
  2. 2.
    Kim J, Kim JH, Shin TK, Choi HJ, John MS (2001) Miscibility and rheological characteristics of biodegradable aliphatic polyester and linear low density polyethylene blends. Eur Polym J37:2131–2139CrossRefGoogle Scholar
  3. 3.
    Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2011) Effect of iron carboxylates on the photodegradability of polypropylene. II. Artificial weathering studies. J Appl Polym Sci 123(5):2968–2976CrossRefGoogle Scholar
  4. 4.
    Omar MF, Akil HM, Ahmad ZA (2012) Effect of molecular structures on dynamic compression properties of polyethylene. Mater Sci Eng A 538:125–134CrossRefGoogle Scholar
  5. 5.
    Chum PS, Swogger KW (2008) Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog Polym Sci 33:797–819CrossRefGoogle Scholar
  6. 6.
    Zan L, Fa W, Wang S (2006) Novel photodegradable low-density polyethylene-TiO2 nanocomposite film. Environ Sci Technol 40:1681–1685CrossRefGoogle Scholar
  7. 7.
    Rezgui F, G’Sell C, Dahoun A, Hiver JM, Sadoun T (2011) Plastic deformation of low-density polyethylene reinforced with biodegradable polylactide, part 1: microstructural analysis and tensile behavior at constant true strain-rate. Polym Eng Sci 51(1):117–125CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526CrossRefGoogle Scholar
  9. 9.
    Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRefGoogle Scholar
  10. 10.
    Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146CrossRefGoogle Scholar
  11. 11.
    Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289–3298CrossRefGoogle Scholar
  12. 12.
    Garlotta D (2002) A literature review of poly (lactic acid). J Polym Environ 9(2):63–83CrossRefGoogle Scholar
  13. 13.
    Gupta P, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43(10):4053–4074CrossRefGoogle Scholar
  14. 14.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(l-lactic acid). J Appl Polym Sci 90:1731–1738CrossRefGoogle Scholar
  15. 15.
    Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(l-lactide). Polymer 46:10290–10300CrossRefGoogle Scholar
  16. 16.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRefGoogle Scholar
  17. 17.
    Martino P, Jiménez A, Ruseckaite RA, Avérous L (2011) Structure and properties of clay nano-biocomposites based on poly (lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213CrossRefGoogle Scholar
  18. 18.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602CrossRefGoogle Scholar
  19. 19.
    Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280CrossRefGoogle Scholar
  20. 20.
    Hasook A, Tanoue S, Iemoto Y (2006) Characterization and mechanical properties of poly (lactic acid)/poly(ε-caprolactone)/organoclay nanocomposites prepared by melt compounding. Polym Eng Sci 46(8):1001–1007CrossRefGoogle Scholar
  21. 21.
    Hamad K, Kaseem M, Deri F (2011) Rheological and mechanical characterization of poly (lactic acid)/polypropylene polymer blends. J Polym Res 18:1799–1806CrossRefGoogle Scholar
  22. 22.
    Hamad K, Kaseem M, Deri F (2010) Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blends. Polym Bull 65:509–519CrossRefGoogle Scholar
  23. 23.
    Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L (2011) Poly (l-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci 121:3223–3237CrossRefGoogle Scholar
  24. 24.
    Kaminsky W (2008) Trends in polyolefin chemistry. Macromol Chem Phys 209(5):459–466CrossRefGoogle Scholar
  25. 25.
    Muelhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromol Chem Phys 204(2):289–327CrossRefGoogle Scholar
  26. 26.
    Zhao X, Li Z, Chen Y, Shi L, Zhu Y (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106CrossRefGoogle Scholar
  27. 27.
    Ikada E (1997) Photo- and biodegradable polyesters. Photodegradation behaviors of aliphatic polyesters. J Photopolym Sci Technol 10(2):265–270CrossRefGoogle Scholar
  28. 28.
    Hoffmann MR, Martins ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  29. 29.
    Nakayama N, Hayashi T (2007) Preparation and characterization of poly (l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264CrossRefGoogle Scholar
  30. 30.
    Richard C, Boule P (1991) Oxidizing species involved in photocatalytic transformations on zinc oxide. J Photochem Photobiol A Chem 60(2):235–243CrossRefGoogle Scholar
  31. 31.
    Mucha M, Bialas S, Kaczmarek H (2014) Effect of nanosilver on photodegradation of Poly(lactic acid). J Appl Polym Sci 131:40144CrossRefGoogle Scholar
  32. 32.
    Zhao X, Li Z, Chen Y, Shi L, Zhu Y (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106CrossRefGoogle Scholar
  33. 33.
    Ikada E (1993) Role of the molecular structure in the photodecomposition of polymers. J Photopolym Sci Technol 6(1):115–122CrossRefGoogle Scholar
  34. 34.
    Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of Poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397Google Scholar
  35. 35.
    Copinet A, Bertrand C, Govidin S, Coma V, Couturier Y (2004) Effects of ultraviolet light (315 nm) temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 55:763–773CrossRefGoogle Scholar
  36. 36.
    Buzarovska A, Grozdanov A (2012) Biodegradable poly(l-lactic acid)/TiO2 nanocomposites: thermal properties and degradation. J Appl Polym Sci 123(4):2187–2193CrossRefGoogle Scholar
  37. 37.
    Ha CS, Cho W (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27(4):759–809CrossRefGoogle Scholar
  38. 38.
    Qian J, Zhu L, Zhang J, Whitehouse R (2007) Comparison of different nucleating agents on crystallization of poly (3-hydroxybutyrate-co-hydroxyvalerates). J Polym Sci B Polym Phys 45:1564–1577CrossRefGoogle Scholar
  39. 39.
    Singh A (1999) Irradiation of polyethylene: some aspects of crosslinking and oxidative degradation. Radiat Phys Chem 56(4):375–380CrossRefGoogle Scholar
  40. 40.
    Furukawa T, Sato H, Murakami R, Zhang J, Noda I, Ochiai S, Ozaki Y (2007) Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer 48(6):1749–1755CrossRefGoogle Scholar
  41. 41.
    Snyder RG (1980) Spectroscopic methods. In: Marton L, Marton C (eds) Methods of experimental physics, vol 16: Part A. Academic, New York, pp 188–200Google Scholar
  42. 42.
    Snyder RG (1961) Vibrational spectra of crystalline n-paraffins: II. Intermolecular effects. J Mol Spectrosc 7:116–144CrossRefGoogle Scholar
  43. 43.
    Snyder RG (1967) Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. J Chem Phys 47(4):1316–1360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kacris Idianês Matos da Silva
    • 1
  • Jesum Alves Fernandes
    • 1
  • Emerson Cristofer Kohlrausch
    • 1
  • Jairton Dupont
    • 1
  • Marcos José Leite Santos
    • 1
    Email author
  • Marcelo Priebe Gil
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations