Skip to main content
Log in

Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, the nanocomposites based on different transition metal oxides like iron oxide (Fe2O3), zinc oxide (ZnO), silicon dioxide (SiO2), zirconium dioxide (ZrO2), and titanium dioxide (TiO2) in PVA matrix have been studied for their suitability as electromagnetic interference (EMI) shielding materials in the frequency range of 4–8 GHz (C-band) and 8–12 GHz (X-band). The nanocomposites containing 0.1, 0.5, 1.0, 5.0, and 10.0 wt% of oxides in the matrix were synthesised by solvent casting method. The EMI attenuation studies in 4–12 GHz frequency range were carried out using the Vector Network Analyzer R & S: ZVA40 method by measuring the loss due to reflection. The minimum reflectivity values for the composites containing Fe2O3, ZnO, SiO2, ZrO2, and TiO2 in PVA matrix at 10 wt% concentration level in the matrix were found to be −38.85 dB (10.4 GHz), −33.65 dB (10.4 GHz), −41.90 dB (10.4 GHz), −24.90 dB (11.0 GHz), and −32.90 dB (9.76 GHz), respectively. Based on these results, the SiO2- and Fe2O3-based composites, which also exhibit high thermal stability and mechanical strength, are found to be low-cost and efficient EMI shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Imai M, Akiyama K, Tanka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Comp Sci Tech 70:1564

    Article  CAS  Google Scholar 

  2. Xiaodong C, Guiqin W, Yuping D, Shunhua L (2007) Microwave absorption properties of barium titanate/epoxide resin composites. J Phys D Appl Phys 40:1827–1830

    Article  Google Scholar 

  3. Chen CS, Chen WR, Chen SC, Chien RD (2008) Optimum injection moulding processing condition on EMI shielding effectiveness of stainless steel fiber filled polycarbonate composite. Int Commun Heat Mass Transf 35(6):744–749

    Article  CAS  Google Scholar 

  4. Vulpe S, Nastase F, Nastase C, Stamatin I (2006) PAN-PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films 495:113–117

    Article  CAS  Google Scholar 

  5. Sienkiewicz Z (1998) Biological effect of electromagnetic fields. Power Eng J 12(3):131–139

    Article  Google Scholar 

  6. Passaro VMN, Olio FD, Leonardis FD (2006) Electromagnetic field photonic sensors. Prog Quantum Electron 30:45–73

    Article  Google Scholar 

  7. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301

    Article  Google Scholar 

  8. Im JS, Kim JG, Lee YS (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47:2640–2647

    Article  CAS  Google Scholar 

  9. Wu J, Hong I, Park SM, Lee SY, Kim MS (2008) Electrical properties of EDLC Electrodes prepared by acid an heat treatment of commercial activated carbon. Carbon Lett 9:137–144

    Article  Google Scholar 

  10. Lee YS, Kim MI, Im JS, ln SJ (2008) Improvement of thermal stability of electrospun PAN fibers by various additives. Carbon Lett 9:200–202

    Article  Google Scholar 

  11. Yu L, Kim K, Park D, Kim MS, Kim KI, Lim YS (2008) Preparation and characterization of pitch/cokes composites anode material for high power lithium secondary battery. Carbon Lett 9:210–217

    Article  Google Scholar 

  12. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

  13. Jiang G, Gilbert M, Hitt DJ, Wilcox GD (2002) Preparation of nickel coated mica as a conductive filler. Comp Part A 33(5):745–751

    Article  Google Scholar 

  14. Li Y, Chen C, Li JT, Zhang S, Ni Y, Cai S, Huang J (2010) Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube––added styrene acrylic emulsion based composite. Nanoscale Res Lett 5:1170–1176

    Article  CAS  Google Scholar 

  15. Yang S, Lozano K, Lomeli A, Foltz HD, Jones R (2005) Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Comp Part A 36(5):691–697

    Article  Google Scholar 

  16. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141

    Article  CAS  Google Scholar 

  17. Wang T, Chen G, Wu C, Wu D (2007) Study on the graphite nanosheets/resin shielding coatings. Prog Org Coat 59(2):101–105

    Article  CAS  Google Scholar 

  18. Goyal RK, Kadam A (2010) Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv Mat Lett 1(2):143–147

    Article  CAS  Google Scholar 

  19. Yun J, Im JS, Kim HI, Lee YS (2011) Effect of oxyfluorination on electromagnetic interference shielding of polyaniline––coated multi-walled carbon nanotubes. Colloid Polym Sci 289:1749–1755

    Article  CAS  Google Scholar 

  20. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  21. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137

    Article  Google Scholar 

  22. Azim SS, Satheesh A, Ramu K, Ramu S, Venkatchari G (2006) Studies on graphite based conductive paint coatings. Prog Org Coat 55(1):1–4

    Article  CAS  Google Scholar 

  23. Osawa Z, Kuwabara S (1992) Thermal stability of the shielding effectiveness of composites to electromagnetic interference. Effects of matrix polymers and surface treatment of fillers. Polym Degrad Stab 35(1):33–43

    Article  CAS  Google Scholar 

  24. Kortschot MT, Woodham RT (1988) Electromagnetic interference shielding with nickel-coated mica composites. Polym Comp 6(4):296–303

    Article  Google Scholar 

  25. Osawa Z, Yamanaka S (1988) Stabilization of shielding effectiveness of electromagnetic interference of aluminium fibre and polyamide composites. J Mat Sci Lett 7(9):983–984

    Article  CAS  Google Scholar 

  26. Bidd DM, Hiscock DF, Preston JF, Bradbury EJ (1988) Thermoplastic matrix sheet composites. Polym Comp 9(3):222–228

    Article  Google Scholar 

  27. Belaabed B, Lamouri S, Naar N, Bourson P, Hamady SOS (2010) Polyaniline-doped benzene sulfonic acid/epoxy resin composites: structural, morphological, thermal and dielectric behaviours. Polym J 42:546–554

    Article  CAS  Google Scholar 

  28. Chiang WY, Chiang YS (1992) Effect of titanate coupling agent on electromagnetic interference shielding effectiveness and mechanical properties of PC–ABS–NCF composite. J Appl Polym Sci 46:673

    Article  CAS  Google Scholar 

  29. Huang CY, Pai JF (1998) Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites. Eur Polym J 34(2):261–267

    Article  CAS  Google Scholar 

  30. Huang C, Pai JF (1997) Studies on processing parameters and thermal stability of ENCF/ABS composites for EMI shielding. J Appl Polym Sci 63(1):115–123

    Article  CAS  Google Scholar 

  31. Huang CY, Chiou TW (1998) The effect of reprocessing on the EMI shielding effectiveness of conductive fibre reinforced ABS composites. Eur Polym J 34(1):37–43

    Article  Google Scholar 

  32. Naishadham K (1992) Shielding effectiveness of conductive polymers. IEEE Trans Electromag Compat 34(1):47–50

    Article  Google Scholar 

  33. Naishadham K (1994) Proceedings 7th International SAMPE Electronics Conference 252

  34. Naishadham K, Kadaba PK (1991) Measurement of the microwave conductivity of a polymeric material with potential applications in absorbers and shielding. IEEE Trans Microw Theory Tech 39(7):1158–1164

    Article  Google Scholar 

  35. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Synth Met 125:23

    Article  Google Scholar 

  36. Yoshino K, Tabata M, Kaneto K, Ohsawa T (1985) Application and characteristics of conducting polymer as radiation shielding material. Japanese J Appl Phys Lett 2(24):693–699

    Article  Google Scholar 

  37. Kanyak A, Unsworth J, Clout R, Mohan AS, Beard GE (1994) Study of microwave transmission, reflection, absorption, and shielding effectiveness of conducting polypyrrole films. J Appl Polym Sci 54(3):269–278

    Article  Google Scholar 

  38. Wei Y, Tian J, MacDiarmid AG, Masters JG, Smith AL, Li D (1993) Preparation and conductivities of fullerene doped polyaniline. J Chem Soc Chem Commun 7:603–604

    Article  Google Scholar 

  39. Fan ZJ, Luo GH, Zhang ZF, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 132:85–89

    Article  CAS  Google Scholar 

  40. Li L, Chung DDL (1994) Electrical and mechanical properties of electrically conductive polyethersulfone composite. Composites 25(3):215–224

    Article  CAS  Google Scholar 

  41. Feng X, Liao G, Du J, Dong L, Jin K, Jian X (2008) Electrical conductivity and microwave absorbing properties of nickel-coated multiwalled carbon nanotubes/poly(phthalazinone ether sulfone ketone)s composites. Polym Eng Sci 48(5):1007–1014

    Article  CAS  Google Scholar 

  42. Li L, Chung DDL (1991) Electrically conducting powder filled polyimidesiloxane. Composites 22(3):211–218

    Article  CAS  Google Scholar 

  43. Neo CP, Varadan VK (2004) Optimization of carbon fiber composites for microwave absorbers. IEEE Trans Electromagn Compat 46(1):102–106

    Article  Google Scholar 

  44. Park KY, Lee SE, Kim CG, Han JH (2006) Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Comp Sci Technol 66:576–584

    Article  CAS  Google Scholar 

  45. Muthu Kumar N, Thilagavathi G (2012) Surface resistivity and EMI shielding effectiveness of polyaniline coated polyester. J Text Appar Technol Man 7(4):1–6

    Google Scholar 

  46. Bai X, Zhai YH, Zhang Y (2011) Green approach to prepare graphene-based composites with high microwave absorption capacity. J Phys Chem C 115(23):11673–11677

    Article  CAS  Google Scholar 

  47. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589

    Article  CAS  Google Scholar 

  48. Kaynak A, Polat A, Yilmazer U (1996) Some microwave and mechanical properties of carbon fiber-polypropylene and carbon black-polypropylene composites. Mater Res Bull 31(10):1195–1206

    Article  CAS  Google Scholar 

  49. Landry CJT, Coltrain BK, Landry MR, Fitzgerald JJ, Long VK (1993) Poly(vinyl acetate)/silica-filled materials: material properties of in situ vs fumed silica particles. Macromolecules 26:3702–3712

    Article  CAS  Google Scholar 

  50. Liu XX, Zhang ZY, Wu YP (2011) Absorption properties of carbon black/silicon carbide microwave absorbers. Comp Part B 42(2):326–329

    Article  CAS  Google Scholar 

  51. Murugan M, Kokate VK, Athawale A, Alhousami MHM (2008) Nanoparticles of barium and strontium titanates/epoxy resin as microwave absorbers. Proceedings of International Conference on Microwave-08, pp 480–483

  52. Athawale AA, Alhousami MHM (2008) Novel epoxy resin networks with high impact strength and hardness. J Rein Plas Comp 27(6):605–612

    Article  CAS  Google Scholar 

  53. Murugan M, Kokate VK (2009) Microwave reflectivity measurement of silicon urea polyvinyl alcohol/epoxy resin composites in X and Ku bands. International Conference on Emerging Trends in Electronic and Photonic Devices and Systems (ELECTRO-2009) pp 336–339

  54. Zou T, Zhao N, Shi C, Li J (2011) Microwave absorbing properties of activated carbon fibre polymer composites. Bull Mater Sci 34(1):75–79

    Article  CAS  Google Scholar 

  55. Xie GW, Wang ZB, Cui ZL, Shi YL (2005) Ni–Fe–Co–P coatings on coiled carbon nanofibers. Carbon 43(15):3181–3183

    Article  CAS  Google Scholar 

  56. Zhang L, Zhu H (2009) Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles. Mater Lett 63:272–274

    Article  CAS  Google Scholar 

  57. Yang YL, Gupta MC, Dudley KL, Lawrence RW (2007) Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. J Nanosci Nanotechnol 7(2):549–554

    CAS  Google Scholar 

  58. Wu J, Chung DDL (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer matrix composite by using activated carbon fibers. Carbon 40(3):445–447

    Article  CAS  Google Scholar 

  59. Neo CP, Varadan VK (2001) Design and development of electromagnetic absorbers with carbon fiber composites and matching dielectric layers. Smart Mater Struct 10:1107–1111

    Article  CAS  Google Scholar 

  60. Xing L, Liu J, Ren S (1998) Study on electromagnetic property of short carbon fibers and its application to radar absorbing materials. J Mater Eng 1:19–21

    Google Scholar 

  61. Kezhi LI, Chuang W, Hejun LI, Gengsheng J, Jian W (2008) Study on the electromagnetic interference of CFRC composites by reflectivity. J Mater Sci Technol 24(2):265

    Google Scholar 

  62. Sau KP, Chaki TK, Chakraborty A, Khastgir D (1997) Electro-magnetic interference shielding by carbon black and carbon fibre filled rubber composites. Plast Rubber Comp Process Appl 26(7):291–297

    CAS  Google Scholar 

  63. Rahaman M, Chaki TK, Khastgir D (2011) High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym Comp 32(11):1790–1805

    Article  CAS  Google Scholar 

  64. Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon fiber carbon-matrix and polymer matrix composites. Comp Part B 30(3):227–231

    Article  Google Scholar 

  65. Wu KH, Ting TH, Wang GP, Ho WD, Shih CC (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 93(2):483–488

    Article  CAS  Google Scholar 

  66. Kwon SK, Ahn JM, Kim GH, Chun CH, Hwang JS, Lee JH (2002) Microwave absorbing properties of carbon black/silicone rubber blend. Polym Eng Sci 42(11):2165–2171

    Article  CAS  Google Scholar 

  67. Oh JH, Oh KS, Kim CG, Hong CS (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Comp Part B 35(1):49–56

    Article  Google Scholar 

  68. Barba AA, Lamberti G, Amore MD, Acierno D (2006) Carbon black/silicone rubber blends as absorbing materials to reduce electro magnetic interferences (EMI). Polym Bull 57(4):587–593

    Article  CAS  Google Scholar 

  69. Wen B, Zhao J, Duan Y, Zhang XG, Zhao YB, Dong C, Liu SH, Li TJ (2006) Electromagnetic wave absorption properties of carbon powder from catalyzed carbon black in X and Ku bands. J Phys D Appl Phys 39(9):1960–1962

    Article  CAS  Google Scholar 

  70. Meng W, Yuping D, Shunhua L, Xiaogang L, Ji Zhijiang (2009) Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. J Magn Magn Mater 321(20):3442–3446

    Article  Google Scholar 

  71. Fan Y, Yang H, Li M, Zou G (2009) Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 115:696–698

    Article  CAS  Google Scholar 

  72. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan S (2009) Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  73. Nayak L, Rahaman M, Khastgir D, Chaki TK (2011) Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym Bull 67(6):1029–1044

    Article  CAS  Google Scholar 

  74. Yun J, H-Il Kim (2012) Erratum to: electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym Bull 69(2):261

    Article  CAS  Google Scholar 

  75. Zhang CS, Ni QQ, Fu SY, Kurashiki K (2007) Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Comp Sci Technol 67(14):2973–2980

    Article  CAS  Google Scholar 

  76. Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258(7):3184–3190

    Article  CAS  Google Scholar 

  77. Murugan M, Kokate V, Bapat MS (2011) Synthesis, characterization and evaluation of reflectivity of nanosized CaTiO3 /epoxy resin composites in microwave bands. Bull Mater Sci 34(4):699–704

    Article  CAS  Google Scholar 

  78. Murugan M, Kokate VK, Athawale A, Bapat MS, Alhousami MHM (2008) Nanoparticles of barium and strontium titanates/epoxy resin as microwave absorbers. In: Proceedings of Electromagnetic Interference and Compatibility. 10748645: 457–462

  79. Huang R, Zhang D, Tseng KJ (2006) An efficient finite-difference-based newton–raphson method to determine intrinsic complex permeabilities and permittivities for Mn–Zn ferrites. IEEE Trans Magn 42(6):1655–1660

    Article  CAS  Google Scholar 

  80. Li BW, Shen Y, Yue ZX, Nana CW (2006) Enhanced microwave absorption in nickel/hexagonal––ferrite/polymer composites. Appl Phys Lett 89:132

    Google Scholar 

  81. Aiyar R, Rao NSH (1989) Ba–Co–Ti based ferrite impregnated polyurethane paints as microwave absorbers. Proceedings of 5th International Conference Ferrites [ICF-5] pp 955-960

  82. Kotsilkova R (2004) Design and characterization of polymer nanocomposites for microwave absorbing applications. IEEE Proceedings pp 93–96

  83. Chen YJ, Gao P, Zhu CL, Wang RX, Wang LJ, Cao MS (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core shell nanorods. J Appl Phys 106:054303–054304

    Article  Google Scholar 

  84. Tang X, Hu KA (2007) Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater Sci Eng B 139:119–123

    Article  CAS  Google Scholar 

  85. Phang SW, Tadokora M, Watanabe J, Kuramoto N (2008) Microwave absorption behaviours of polyaniline nanocomposites containing TiO2 nanoparticles. Curr Appl Phys 8:391–394

    Article  Google Scholar 

  86. Phang SW, Tadokora M, Watanabe J, Kuramoto N (2008) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158:251–258

    Article  CAS  Google Scholar 

  87. Zhu Y, Pan Y, Xu H, Guo J (2009) Investigation of the devitrification and microwave penetrating properties of fused silica. J Non Cryst Solids 355:785–790

    Article  CAS  Google Scholar 

  88. Singh R, Kulkarni SG, Channe SS (2013) Thermal and mechanical properties of nano-titanium dioxide-doped polyvinyl alcohol. Polym Bull 70(4):1251–1264

    Article  CAS  Google Scholar 

  89. Drinovsky J, Kejik Z (2009) Electromagnetic shielding efficiency measurement of composite materials. Measurement Sci Rev 9(4):109–112

    Article  Google Scholar 

  90. Bhattacharya P, Sahoo S, Das CK (2013) Microwave absorption behavior of MWCNT based nanocomposites in X-band region. Exp Polym Lett 7(3):212–223

    Article  CAS  Google Scholar 

  91. Wong PTC, Chambers B, Anderson AP, Wright PV (1992) Large area conducting polymer composites and their use in microwave absorbing material. Electron Lett 28(17):1651–1653

    Article  CAS  Google Scholar 

  92. Abbas SM, Dixit AK, Chatterjee R, Goel TC (2005) Complex permittivity and microwave absorption properties of BaTiO3–polyaniline composite. Mat Sci Eng B 123(2):167–171

    Article  Google Scholar 

  93. Abbas SM, Chandra M, Verma A, Chatterjee R, Goel TC (2006) Complex permittivity and microwave absorption properties of a composite dielectric absorber. Compos Part A 37:2148–2154

    Article  Google Scholar 

  94. Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of co-precipitated ultrafine zinc ferrite. J Magn Magn Mater 269:217–226

    Article  CAS  Google Scholar 

  95. Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44:3917–3927

    Article  CAS  Google Scholar 

  96. Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320(16):2132

    Article  CAS  Google Scholar 

  97. Zhuo RF, Qiao L, Feng HT, Chen JT, Yan D, Wu ZG, Yan PX (2008) Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. J Appl Phys 104(9):09410

    Article  Google Scholar 

  98. Wen G, Wu GL, Lei TQ, Zhou Y, Guo ZX (2000) Co-enhanced SiO2–BN ceramics for high-temperature dielectric applications. J Eur Ceram Soc 20(12):1923–1928

    Article  CAS  Google Scholar 

  99. Geethalakshmi K, Prabhakaran T, Hemalatha J (2012) Dielectric studies on nano zirconium dioxide synthesized through co-precipitation process. World Acad Sci Eng Technol 64:179–182

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Dr. Rajkumar, Sc ‘E’, Department of Electronics, DIAT for extending the test facilities for measurement of EMI shielding properties of various nanocomposites and for valuable discussion on the test results. Authors are also grateful to Prof. P. K. Khanna, Head, Department of Applied Chemistry and Dr. A. B. Samui, Visiting Professor, DIAT for valuable discussions and constructive suggestions. Our sincere thanks are also due to Vice Chancellor, Defence Institute of Advance Technology, for moral support, constant encouragement, and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh G. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Kulkarni, S.G. Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polym. Bull. 71, 497–513 (2014). https://doi.org/10.1007/s00289-013-1073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1073-2

Keywords

Navigation