Skip to main content
Log in

Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Highly conducting polyaniline (PANi)-coated multi-walled carbon nanotubes (MWCNTs) were prepared by in situ polymerization method for electromagnetic interference shielding. The thickness of the PANi coatings was controlled by the oxyfluorination treatment on the multi-walled carbon nanotubes and analyzed with both SEM and TEM. The oxyfluorination with higher oxygen content produced more hydrophilic functional groups on the surface of multi-walled carbon nanotubes. The functional groups led to the well distribution and coating of PANi on the multi-walled carbon nanotubes resulting in the higher interfacial affinity between them. The uniform coating of PANi on MWCNTs by controlling the oxyfluorination conditions also played a crucial role in increasing the electrical conductivity of nanocomposites. The improved interfacial affinity resulted in the higher electromagnetic interference (EMI) SE of 47.03 dB based on the synergistic combination of the conductive components. The EMI shielding mechanism of PANi on MWCNTs suggested that EMI was mainly shielded by adsorption to avoid secondary EMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olmedo L, Hourquebie P, Jousse F (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers. Wiley, Chichester

    Google Scholar 

  2. Osawa Z, Kuwabara S (1989) Thermal stability of the shielding effectiveness of composites to electromagnetic interference. Effects of matrix polymers and surface treatment of fillers. Polym Degrad Stab 35:33–43

    Article  Google Scholar 

  3. Huang CY, Pai JF (1997) Studies on processing parameters and thermal stabilityof ENCF/ABS composites for EMI shielding. J Appl Polym Sci 63:115–135

    Article  CAS  Google Scholar 

  4. Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer, London

    Book  Google Scholar 

  5. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  6. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, Smalley RE (1997) Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys Rev B 55:R4921–R4924

    Article  CAS  Google Scholar 

  7. Huang YL, Yuen SM, Ma CCM, Chuang CY, Yu KC, Teng CC, Tien HW, Chiu YC, Wu SY, Liao SH, Weng FB (2009) Morphological, electrical, electromagnetic interference (EMI) shielding, and tribological properties of functionalized multi-walled carbon nanotubes/poly methyl methacrylate (PMMA) composites. Compos Sci Technol 69:1991–1996

    Article  CAS  Google Scholar 

  8. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  9. Chandrasekhar P, Naisdham K (1999) Broadband microwave absorption and shielding properties of a polyaniline. Synth Met 105:115–120

    Article  CAS  Google Scholar 

  10. Truong VT, Riddell SZ, Muscat RF (1998) Polypyrrole based microwave absorbers. J Mater Sci 33:4971–4976

    Article  CAS  Google Scholar 

  11. Kaynak A (1996) Electromagnetic shielding effectiveness of galvanostaticallysynthesized conducting polypyrrole films in the 300–2000 MHz frequency range. Mater Res Bull 31:845–860

    Article  CAS  Google Scholar 

  12. Ratna D, Abraham TN, Siengchin S, Karger-Kocsis J (2009) Novel method for dispersion of multiwall carbon nanotubes in poly(ethylene oxide) matrix using dicarboxylic acid salts. J Polym Sci Pol Phys 47:1156–1165

    Article  CAS  Google Scholar 

  13. Wu T, Chang H, Lin Y (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos Sci Technol 69:639–644

    Article  CAS  Google Scholar 

  14. Chen W, Wu J, Kuo P (2008) Poly(oxyalkylene)diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites: synthesis, water state, and conductivity. Chem Mater 20:5756–5767

    Article  CAS  Google Scholar 

  15. Zhou Y, Jeelani MI, Jeelani S (2009) Development of photo micro-graph method to characterize dispersion of CNT in epoxy. Mater Sci Eng A 506:39–44

    Article  Google Scholar 

  16. Yun J, Im JS, Lee YS, Bae TS, Lim YM, Kim HI (2010) pH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules. Colloids Surf A Physicochem Eng Asp 368:23–30

    Article  CAS  Google Scholar 

  17. Yun J, Im JS, Lee YS, Kim HI (2010) Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules. Eur Polym J 46:900–909

    Article  CAS  Google Scholar 

  18. Im JS, Park SJ, Lee YS (2009) The metal–carbon–fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity. Int J Hydrog Energy 34:1423–1428

    Article  CAS  Google Scholar 

  19. Park OK, Jeevananda T, Kim NH, Kim SI, Lee JH (2009) Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites. Scripta Mater 60:551–554

    Article  CAS  Google Scholar 

  20. Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, Yowell L (2004) Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 42:1783–1791

    Article  CAS  Google Scholar 

  21. Wu Z, Li J, Timmer D, Lozano K, Bose S (2009) Study of processing variables on the electrical resistivity of conductive adhesives. Int J Adhes Adhes 29:488–494

    Article  Google Scholar 

  22. Im JS, Kim JG, Lee YS (2009) Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon 47:2640–2647

    Article  CAS  Google Scholar 

  23. Park SJ, Song SY, Shin JS, Rhee JM (2005) Effect of surface oxyfluorination on the dyeability of polyethylene film. J Colloid Interface Sci 283:190–195

    Article  CAS  Google Scholar 

  24. Chamssedine F, Claves D (2008) Selective substitution of fluorine atoms grafted to the surface of carbon nanotubes and application to an oxyfluorination strategy. Carbon 46:957–962

    Article  CAS  Google Scholar 

  25. Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M (2006) Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci Part B-Phys 45:231–245

    Article  CAS  Google Scholar 

  26. Konyushenko EN, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723

    Article  CAS  Google Scholar 

  27. Makeiff DA, Huber T (2006) Microwave absorption by polyaniline–carbon nanotube composites. Synth Met 156:497–505

    Article  CAS  Google Scholar 

  28. Dhawan SK, Singh K, Bakhshi AK, Ohlan A (2009) Conducting polymer embedded with nanoferrite and titanium dioxide nanoparticles for microwave absorption. Synthetic Met 159:2259–2262

    Article  CAS  Google Scholar 

  29. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47:1738–1746

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by a research fund of Chungnam National University in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Il Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J., Im, J.S., Kim, HI. et al. Effect of oxyfluorination on electromagnetic interference shielding of polyaniline-coated multi-walled carbon nanotubes. Colloid Polym Sci 289, 1749–1755 (2011). https://doi.org/10.1007/s00396-011-2496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2496-7

Keywords

Navigation