Skip to main content
Log in

High-dielectric constant percolative composite of P(VDF-TrFE) and modified multi-walled carbon-nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To develop a high-dielectric constant composite of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] and multi-walled carbon-nanotubes (MWCNTs) with desirable homogeneity, MWCNTs were treated with a nitro-sulfuric acid by ultrasonication. The chemically modified MWCNTs (a-MWCNTs) were characterized by Fourier transform infrared spectroscopy and a back-titration procedure. Improvement of the dispersibility of a-MWCNTs in polymer matrix, in comparison with unmodified MWCNTs in P(VDF-TrFE), was confirmed by field emission scanning electron microscopy. Electric behavior of the composites with different volume fraction of dispersed carbon nanotubes can be described by percolation theory, as well as the Maxwell–Wagner–Sillars mechanism. The percolation threshold (f c ) of composites with a-MWCNTs (f c  = 0.0308) is larger than that of composites with MWCNTs (f c  = 0.0216) due to better dispersion of a-MWCNTs in matrix and the reduction of aspect ratio of a-MWCNTs occurred in the modification procedure. The composite with 2.98 vol% (close to the percolation threshold) of a-MWCNTs has a dielectric constant of 592 at 100 Hz and room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang CC, Song JF, Bao HM, Shen QD, Yang CZ (2008) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18:1299

    Article  CAS  Google Scholar 

  2. Wang L, Dang ZM (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903

    Article  Google Scholar 

  3. Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai JB (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077

    Article  CAS  Google Scholar 

  4. Dang ZM, Lin YQ, Xu HP, Shi CY, Li ST, Bai JB (2008) Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv Funct Mater 18:1509

    Article  CAS  Google Scholar 

  5. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101

    Article  Google Scholar 

  6. Wang JW, Wang Y, Li SQ, Xiao J (2010) Enhanced dielectric response in P(VDF-TrFE) based all-organic nanocomposites. J Polym Sci B Polym Phys 48:490

    Article  CAS  Google Scholar 

  7. Cui LL, Chao DM, Lu XF, Zhang JF, Mao H, Li YX, Wang C (2010) Synthesis and properties of an electroactive alternating multi-block copolymer of poly(ethylene oxide) and oligoaniline with high dielectric constant. Polym Int 59:975

    Article  CAS  Google Scholar 

  8. Zhang SH, Zhang NY, Huang C, Ren KL, Zhang QM (2005) Microstructure and electromechanical properties of carbon nanotubes/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites. Adv Mater 17:1897

    Article  CAS  Google Scholar 

  9. Wang F, Wang JW, Li SQ, Xiao J (2009) Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym Bull 63:101

    Article  CAS  Google Scholar 

  10. Li SQ, Wang F, Wang Y, Wang JW, Xiao J (2008) Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites. J Mater Sci 43:2653

    Article  CAS  Google Scholar 

  11. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115

    Article  CAS  Google Scholar 

  12. Zhang QM, Bharti V, Zhao XZ (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280:2101

    Article  CAS  Google Scholar 

  13. Zhang SH, Huang C, Klein RJ, Xia F, Zhang QM, Cheng ZY (2007) High performance electroactive polymers and nano-composites for artificial muscles. J Intell Mater Syst Struct 18:133

    Article  Google Scholar 

  14. Zhang QM, Li HF, Poh M, Xu HS, Cheng ZY, Xia F, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature (London) 419:284

    Article  CAS  Google Scholar 

  15. Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos Sci Technol 67:2564

    Article  CAS  Google Scholar 

  16. Wang JW, Shen QD, Bao HM, Yang CZ, Zhang QM (2005) Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer. Macromolecules 38:2247

    Article  CAS  Google Scholar 

  17. Wang JW, Wang Y, Wang F, Li SQ, Xiao J, Shen QD (2009) A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer 50:679

    Article  CAS  Google Scholar 

  18. Cheng ZY, Olson D, Xu HS, Xia F, Hundal JS, Zhang QM, Bateman FB, Kavarnos GJ, Ramotowski T (2002) Structural changes and transitional behavior studied from both micro- and macroscale in the high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Macromolecules 35:664

    Article  CAS  Google Scholar 

  19. Wang JW, Shen QD, Yang CZ, Zhang QM (2004) High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer. Macromolecules 37:2294

    Article  CAS  Google Scholar 

  20. Goncharenko AV (2003) Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Phys Rev E 68:041108

    Article  Google Scholar 

  21. Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1

    Article  CAS  Google Scholar 

  22. Huang C, Zhang QM (2004) Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv Funct Mater 14:501

    Article  CAS  Google Scholar 

  23. Pecharroman C, Esteban-Betegon F, Bartolome JF, Lopez-Esteban S, Moya JS (2001) New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr≈80,000). Adv Mater 13:1541

    Article  CAS  Google Scholar 

  24. Li JY, Huang C, Zhang QM (2004) Enhanced electromechanical properties in all-polymer percolative composites. Appl Phys Lett 84:3124

    Article  CAS  Google Scholar 

  25. Lee SI, Song Y, Noh TW, Chen XD, Gaines JR (1986) Experimental observation of nonuniversal behavior of the conductivity exponent for three-dimensional continuum percolation systems. Phys Rev B 34:6719

    Article  CAS  Google Scholar 

  26. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852

    Article  CAS  Google Scholar 

  27. Li JY (2003) Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett 90:217601

    Article  Google Scholar 

  28. Seanor DA (1982) Electrical properties of polymers. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (no. 21174063), the Natural Science Foundation of Jiangsu Province (no. BK2009380), and the Aeronautical Science Foundation of China (no. 2011ZF52063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wei, N., Wang, F. et al. High-dielectric constant percolative composite of P(VDF-TrFE) and modified multi-walled carbon-nanotubes. Polym. Bull. 68, 2285–2297 (2012). https://doi.org/10.1007/s00289-012-0739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0739-5

Keywords

Navigation