Skip to main content
Log in

Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

We report here a high dielectric percolative polymer nanocomposite, fabricated by a combination of triethylene-tetramine (TETA) modified multiwalled carbon nanotube (named as TETA-MWNT) within epoxy resin matrix. In this composite system, with various TETA-MWNT volume fractions, the dielectric constant (K) is well fitted by the scaling law of the percolation theory with the percolation threshold f c is 0.042 and the critical exponent p is 0.786. At 1,000 Hz of room temperature, the value of the dielectric constant is as high as 421 with the TETA-MWNT content of 4.14vol%, which is almost 60 times higher than that of epoxy resin. In contrast, a simple blend of pristine MWNT in epoxy composite shows evident lower dielectric constant and much higher loss with the same volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang R, Baxendale M, Peijs T (2007) Universal resistivity–strain dependence of carbon nanotube/polymer composites. Phy Rev B 76:195433

    Article  Google Scholar 

  2. Huang C, Zhang QM (2004) All—organic dielectric—percolative three-component composite materials with high electromechanical response. Appl Phys Lett 84:4391

    Article  CAS  Google Scholar 

  3. Huang Y, Li N, Ma YF, Du F, Li FF, Chen YS et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614

    Article  CAS  Google Scholar 

  4. Dalmas F, Dendievel R, Chazeau L, Cavaille JY, Gauthier C (2006) Carbon nanotube-filled polymer of electrical conductivity in composites. Numerical simulation three-dimensional entangled fibrous networks. Acta Mater 54:2923

    Article  CAS  Google Scholar 

  5. Yao SH, Dang ZM, Jiang MJ, Xu HP (2007) Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Appl Phys Lett 91:212901

    Article  Google Scholar 

  6. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967

    Article  CAS  Google Scholar 

  7. Coleman JN, Curran S, Dalton AB, Davey AP, McCarthy B et al (1998) Percolation-dominated conductivity in a conjugated-polymer–carbon-nanotube composite. Phy Rev B 58:7492

    Article  Google Scholar 

  8. Sandler JKW, Kirk JE, Kinloch IA, Shafferl MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893

    Article  CAS  Google Scholar 

  9. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922

    Article  CAS  Google Scholar 

  10. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP (2006) Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47:7740

    Article  CAS  Google Scholar 

  11. Nogales A, Broza G, Roslaniec Z, Schulte K, Šics I et al (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly (butylene terephthalate). Maromolecules 37:7669

    Article  CAS  Google Scholar 

  12. Gojny FH, Wichmann MH, Fiedler B, Kinloch LA et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47:2036

    Article  CAS  Google Scholar 

  13. Wang JW, Shen QD, Yang CZ (2004) High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer. Mcromolecules 37:2294

    Article  CAS  Google Scholar 

  14. Park JG, Li S, Liang R, Zhang C, Wang B (2008) Structural changes and Raman analysis of single-walled carbon nanotube buckypaper after high current density induced burning. Carbon 46:1175

    Article  CAS  Google Scholar 

  15. Gutierrez HR, Kim UJ, Kim JP, Eklund PC (2005) Thermal conversion of bundled carbon nanotubes into graphitic ribbons. Nano Lett 2195

  16. Ahmad K, Pan W, Shi SL (2006) Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl Phys Lett 89:133122

    Article  Google Scholar 

  17. Krause S, Bohon K (2001) Electromechanical response of electrorheological fluids and poly(dimethylsiloxane) networks. Macromolecules 34:7179

    Article  CAS  Google Scholar 

  18. Huang C, Zhang QM (2003) High-dielectric-constant all-polymer percolative composites. Appl Phys Lett 82:3503

    Google Scholar 

  19. Chen Q, Du PY, Jin L, Weng WJ, Han GR (2007) Percolative conductor/polymer composite films with significant dielectric properties. Appl Phys Lett 91:022912

    Article  Google Scholar 

  20. Seanoe DA (1982) Electrical properties of polymers. Academic Press, New York

    Google Scholar 

  21. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hi-tech Research and Development Program China under Contract No2002AA334130, the Aeronautical Science Foundation of China under Contract No. 2006ZF52060, and the Natural Science Foundation of Jiangsu Province (No. BK2006194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Wang, JW., Li, Sq. et al. Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym. Bull. 63, 101–110 (2009). https://doi.org/10.1007/s00289-009-0064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0064-9

Keywords

Navigation