Skip to main content
Log in

Correlated random walks inside a cell: actin branching and microtubule dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Correlated random walks (CRW) have been explored in many settings, most notably in the motion of individuals in a swarm or flock. But some subcellular systems such as growth or disassembly of bio-polymers can also be described with similar models and understood using related mathematical methods. Here we consider two examples of growing cytoskeletal elements, actin and microtubules. We use CRW or generalized CRW-like PDEs to model their spatial distributions. In each case, the linear models can be reduced to a Telegrapher’s equation. A combination of explicit solutions (in one case) and numerical solutions (in the other) demonstrates that the approach to steady state can be accompanied by (decaying) waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler Y, Givli S (2013) Closing the loop: lamellipodia dynamics from the perspective of front propagation. Phys Rev E 88(4):042708

    Article  Google Scholar 

  • Allard J, Mogilner A (2013) Traveling waves in actin dynamics and cell motility. Curr Opin Cell Biol 25(1):107–115

    Article  Google Scholar 

  • Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B, Ishikawa-Ankerhold HC, Gerisch G (2009) The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 96(7):2888–2900

    Article  Google Scholar 

  • Carlsson AE (2010) Dendritic actin filament nucleation causes traveling waves and patches. Phys Rev Lett 104(22):228102

    Article  Google Scholar 

  • Dogterom AM (1994) Aspects physiques de l’assemblage des microtubules et du fuseau mitotique; phd thesis. Ph.D. thesis, Universite de Paris, Centre D’Orsay

  • Dogterom M, Leibler S (1993) Physical aspects of the growth and regulation of microtubule structures. Phys Rev Lett 70(9):1347

    Article  Google Scholar 

  • Dogterom M, Maggs A, Leibler S (1995) Diffusion and formation of microtubule asters: physical processes versus biochemical regulation. Proc Natl Acad Sci 92(15):6683–6688

    Article  Google Scholar 

  • Dunbar SR, Othmer HG (1986) On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks. In: Othmer HG (ed) Nonlinear oscillations in biology and chemistry. Lecture notes in biomathematics, vol 66. Springer, Berlin, Heidelberg, pp 274–289

    Chapter  Google Scholar 

  • Eftimie R (2012) Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J Math Biol 65(1):35–75

    Article  MathSciNet  Google Scholar 

  • Gou J, Edelstein-Keshet L, Allard J (2014) Mathematical model with spatially uniform regulation explains long-range bidirectional transport of early endosomes in fungal hyphae. Mol Biol Cell 25(16):2408–2415

    Article  Google Scholar 

  • Grimm H, Verkhovsky A, Mogilner A, Meister JJ (2003) Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur Biophys J 32(6):563–577

    Article  Google Scholar 

  • Hadeler K (1996) Reaction telegraph equations and random walk systems. Stoch Spat Struct Dyn Syst 45:133

    MathSciNet  MATH  Google Scholar 

  • Hadeler KP (1999) Reaction transport systems in biological modelling. In: Capasso V (ed) Mathematics inspired by biology. Lecture notes in mathematics, vol 1714. Springer, Berlin, Heidelberg, pp 95–150

    Chapter  Google Scholar 

  • Hadeler KP (2000) Reaction transport equations in biological modeling. Math Comput Model 31(4–5):75–81

    Article  Google Scholar 

  • Hadeler KP (2017) Topics in mathematical biology. Lecture notes on mathematical modelling in the life sciences. Springer, Berlin

    Book  Google Scholar 

  • Hillen T (1996) A turing model with correlated random walk. J Math Biol 35(1):49–72

    Article  MathSciNet  Google Scholar 

  • Hillen T, Leonard IE, Van Roessel H (2014) Partial differential equations: theory and completely solved problems. Wiley, Hoboken

    MATH  Google Scholar 

  • Holmes WR, Carlsson AE, Edelstein-Keshet L (2012) Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Phys Biol 9(4):046005

    Article  Google Scholar 

  • Kac M (1974) A stochastic model related to the telegrapher’s equation. Rocky Mt J Math 4(3):497–509

    Article  MathSciNet  Google Scholar 

  • Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453(7194):475

    Article  Google Scholar 

  • Mata MA, Dutot M, Edelstein-Keshet L, Holmes WR (2013) A model for intracellular actin waves explored by nonlinear local perturbation analysis. J Theor Biol 334:149–161

    Article  MathSciNet  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, vol 14. Springer, Berlin

    Book  Google Scholar 

  • Othmer HG, Hillen T (2000) The diffusion limit of transport equations derived from velocity-jump processes. SIAM J Appl Math 61(3):751–775

    Article  MathSciNet  Google Scholar 

  • Othmer HG, Dunbar SR, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26(3):263–298

    Article  MathSciNet  Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between n-wasp and the arp2/3 complex links cdc42-dependent signals to actin assembly. Cell 97(2):221–231

    Article  Google Scholar 

  • Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Simul 3(2):413–439

    Article  MathSciNet  Google Scholar 

  • Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145(5):1009–1026

    Article  Google Scholar 

  • Weinberger H (1995) A first course in partial differential equations: with complex variables and transform methods (Dover books on mathematics). Dover Publications, Mineola

    Google Scholar 

  • Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW (2007) An actin-based wave generator organizes cell motility. PLoS Biol 5(9):e221

    Article  Google Scholar 

Download references

Acknowledgements

AB is supported by an NSERC post-doctoral fellowship; LEK is supported by an NSERC Discovery grant; We are grateful to the Pacific Institute for Mathematical Sciences for providing space and resources for AB’s postdoctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Buttenschön.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttenschön, A., Edelstein-Keshet, L. Correlated random walks inside a cell: actin branching and microtubule dynamics. J. Math. Biol. 79, 1953–1972 (2019). https://doi.org/10.1007/s00285-019-01416-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01416-6

Keywords

Mathematics Subject Classification

Navigation