Skip to main content

Connecting Actin Polymer Dynamics Across Multiple Scales

  • Chapter
  • First Online:
Using Mathematics to Understand Biological Complexity

Abstract

Actin is an intracellular protein that constitutes a primary component of the cellular cytoskeleton and is accordingly crucial for various cell functions. Actin assembles into semi-flexible filaments that cross-link to form higher order structures within the cytoskeleton. In turn, the actin cytoskeleton regulates cell shape, and participates in cell migration and division. A variety of theoretical models have been proposed to investigate actin dynamics across distinct scales, from the stochastic nature of protein and molecular motor dynamics to the deterministic macroscopic behavior of the cytoskeleton. Yet, the relationship between molecular-level actin processes and cellular-level actin network behavior remains understudied, where prior models do not holistically bridge the two scales together.

In this work, we focus on the dynamics of the formation of a branched actin structure as observed at the leading edge of motile eukaryotic cells. We construct a minimal agent-based model for the microscale branching actin dynamics, and a deterministic partial differential equation (PDE) model for the macroscopic network growth and bulk diffusion. The microscale model is stochastic, as its dynamics are based on molecular level effects. The effective diffusion constant and reaction rates of the deterministic model are calculated from averaged simulations of the microscale model, using the mean displacement of the network front and characteristics of the actin network density. With this method, we design concrete metrics that connect phenomenological parameters in the reaction-diffusion system to the biochemical molecular rates typically measured experimentally. A parameter sensitivity analysis in the stochastic agent-based model shows that the effective diffusion and growth constants vary with branching parameters in a complementary way to ensure that the outward speed of the network remains fixed. These results suggest that perturbations to microscale rates can have significant consequences at the macroscopic level, and these should be taken into account when proposing continuum models of actin network dynamics.

The authors “Brittany Bannish, Kelsey Gasior, Rebecca L. Pinals, and Minghao W. Rostami” contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Schwarz and M.L. Gardel. United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J. Cell Sci., 125:3051–3060, 2012.

    Google Scholar 

  2. J. Stricker, T. Falzone, and M. Gardel. Mechanics of the F-actin cytoskeleton. J. Biomech., 43:9, 2010.

    Article  Google Scholar 

  3. T.D. Pollard and G.G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112:453–465, 2003.

    Article  Google Scholar 

  4. H. Lodish, A. Berk, S.L. Zipursky, et al. Molecular Cell Biology, 4th ed. W. H. Freeman, New York, USA, 2000.

    Google Scholar 

  5. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter, editors. Intracellular membrane traffic. Garland Science, New York, 2008.

    Google Scholar 

  6. D. Bray. Cell Movements: From molecules to motility, 2nd ed. Garland Science, New York, USA, 2001.

    Google Scholar 

  7. J. Howard. Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland, USA, 2001.

    Google Scholar 

  8. T. Svitkina. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol., 10:a018267, 2018.

    Article  Google Scholar 

  9. M.H. Jensen, E.J. Morris, and D.A. Weitz. Mechanics and dynamics of reconstituted cytoskeletal systems. Biochim. Biophys. Acta, 1853:3038–3042, 2015.

    Google Scholar 

  10. D. Holz and D. Vavylonis. Building a dendritic actin filament network branch by branch: models of filament orientation pattern and force generation in lamellipodia. Biophys. Rev., 10:1577–1585, 2018.

    Article  Google Scholar 

  11. M. Kavallaris. Cytoskeleton and Human Disease. Humana Press, Totowa, USA, 2012.

    Book  Google Scholar 

  12. L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and J. Plastino. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev., 94:235–263, 2014.

    Article  Google Scholar 

  13. J.A. Cooper T.D. Pollard. Actin and actin-binding proteins. a critical evaluation of mechanisms and functions. Annu. Rev. Biochem., 55:987–1035, 1986.

    Google Scholar 

  14. R.D. Mullins, J.A. Heuser, and T.D. Pollard. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA, 95:6181–6186, 1998.

    Article  Google Scholar 

  15. T.M. Svitkina and G.G. Borisy. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol., 145:1009–1026, 1999.

    Article  Google Scholar 

  16. R. Cooke. The sliding filament model 1972-2004. J. Gen. Physiol., 123:643–656, 2004.

    Google Scholar 

  17. F.J. Nédélec, T. Surrey, A.C. Maggs, and S. Leibler. Self-organization of microtubules and motors. Nature, 389:305–308, 1997.

    Article  Google Scholar 

  18. T. Surrey, F. Nédélec, S. Leibler, and E. Karsenti. Properties determining self-organization of motors and microtubules. Science, 292:1167–1171, 2001.

    Article  Google Scholar 

  19. T.D. Pollard. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol., 8:1–17, 2016.

    Article  Google Scholar 

  20. A. Mogilner and G. Oster. Cell motility driven by actin polymerization. Biophys J., 71:3030–3045, 1996.

    Article  Google Scholar 

  21. M. Abercrombie, J.E. Heaysman, and S.M. Pegrum. The locomotion of fibroblasts in culture ii. ‘ruffling”. Exp Cell Res, 60:437–444, 1970.

    Google Scholar 

  22. E.D. Goley and M.D. Welch. The Arp2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol., 7:713–726, 2006.

    Article  Google Scholar 

  23. H.E. Huxley. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol., 7:281–308, 1963.

    Article  Google Scholar 

  24. D.T. Woodrum, S.A. Rich, and T.D. Pollard. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J. Cell Biol., 67:231–237, 1975.

    Article  Google Scholar 

  25. T.D. Pollard D.R. Kovar. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci, 101:14725–14730, 2004.

    Article  Google Scholar 

  26. X. Wang and A.E. Carlsson. A master equation approach to actin polymerization applied to endocytosis in yeast. PLOS Comput. Biol., 13:e1005901, 2017.

    Article  Google Scholar 

  27. K. Popov, J. Komianos, and G.A. Papoian. MEDYAN: Mechanochemical simulations of contraction and polarity alignment in actomyosin networks. PLOS Comput. Biol., 12:e1004877, 2016.

    Article  Google Scholar 

  28. V. Wollrab, J.M. Belmonte, L. Baldauf, M. Leptin, F. Nédélec, and G.H. Koenderink. Polarity sorting drives remodeling of actin-myosin networks. J Cell Sci., 132:jcs219717, 2018.

    Google Scholar 

  29. S. Dmitrieff and F. Nédélec. Amplification of actin polymerization forces. J Cell Biol., 212:763–766, 2016.

    Article  Google Scholar 

  30. L. Edelstein-Keshet and G.B. Ermentrout. A model for actin-filament length distribution in a lamellipod. J. Math. Biol, 43:325–355, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Mogilner and L. Edelstein-Keshet. Regulation of actin dynamics in rapidly moving cells: A quantitative analysis. Biophys. J., 83:1237–1258, 2002.

    Article  Google Scholar 

  32. A. Gopinathan, K.-C. Lee, J.M. Schwarz, and A.J. Liu. Branching, capping, and severing in dynamic actin structures. Phys. Rev. Lett., 99:058103, 2007.

    Article  Google Scholar 

  33. T. Kim, W. Hwang, H. Lee, and R.D. Kamm. Computational analysis of viscoelastic properties of crosslinked actin networks. PLOS Comput. Biol., 5:e1000439, 2009.

    Article  Google Scholar 

  34. F. Huber, J. Käs, and B. Stuhrmann. Growing actin networks form lamellipodium and lamellum by self-assembly. Biophys. J., 95:5508–5523, 2008.

    Article  Google Scholar 

  35. B. Stuhrmann, F. Huber, and J. Käs. Robust organizational principles of protrusive biopolymer networks in migrating living cells. PLoS ONE, 6:e14471, 2011.

    Article  Google Scholar 

  36. J. Jeon, N.R. Alexander, A.M. Weaver, and P.T. Cummings. Protrusion of a virtual model lamellipodium by actin polymerization: A coarse-grained langevin dynamics model. J. Stat. Phys., 133:79–100, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Weichsel and U.S. Schwarz. Two competing orientation patterns explain experimentally observed anomalies in growing actin networks. Proc. Natl. Acad. Sci. USA, 107:6304–6309, 2010.

    Article  Google Scholar 

  38. M. Malik-Garbi, N. Ierushalmi, S. Jansen, E. Abu-Shah, B.L. Goode, A. Mogilner, and K. Keren. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys., 15:509–516, 2019.

    Article  Google Scholar 

  39. E.A. Vitriol, L.M. McMillen, M. Kapustina, S.M. Gomez, D. Vavylonis, and J.Q. Zheng. Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep., 11:433–445, 2015.

    Article  Google Scholar 

  40. I.L. Novak, B.M. Slepchenko, and A. Mogilner. Quantitative analysis of G-actin transport in motile cells. Biophys. J., 95:1627–1638, 2008.

    Article  Google Scholar 

  41. E.L. Barnhart, K-C Kun-Chun Lee, K. Keren, A. Mogilner, and J.A. Theriot. An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol., 9:e1001059, 2011.

    Google Scholar 

  42. A. Buttenschön and L. Edelstein-Keshet. Correlated random walks inside a cell: actin branching andmicrotubule dynamics. J. of Math. Biol., 79:1953–1972, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Rottner, J. Faix, S. Bogdan, S. Linder, and E. Kerkhoff. Actin assembly mechanisms at a glance. J. Cell Sci., 130:3427–3435, 2017.

    Article  Google Scholar 

  44. J.A. Theriot, J. Rosenblatt, D.A. Portnoy, P.J. Goldschmidt-Clermont, and T.J. Mitchison. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell, 76:505–517, 1994.

    Google Scholar 

  45. A. Mogilner. Mathematics of cell motility: have we got its number? J. Math. Biol., 58:105–134, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  46. K.J. Amann and T.D. Pollard. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc. Natl. Acad. Sci. USA, 98:15009–15013, 2001.

    Article  Google Scholar 

  47. M.H. Jensen, E.J. Morris, R. Huang, G. Rebowski, R. Dominguez, D.A. Weitz, J.R. Moore, and C-L.A. Wang. The conformational state of actin filaments regulates branching by actin-related protein 2/3 (Arp2/3) complex. J. Biol. Chem., 287:31447–31453, 2012.

    Google Scholar 

  48. M. Vinzenz, M. Nemethova, F. Schur, J. Mueller, A. Narita, E. Urban, C. Winkler, C. Schmeiser, S.A. Koestler, K. Rottner, G.P. Resch, Y. Maeda, and J.V. Small. Actin branching in the initiation and maintenance of lamellipodia. J. Cell Sci., 125:2775–2785, 2012.

    Google Scholar 

  49. B.A. Smith, K. Daugherty-Clarke, B.L. Goode, and J. Gelles. Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging. Proc. Natl. Acad. Sci. USA, 110:1285–1290, 2013.

    Article  Google Scholar 

  50. J.G. Skellam. Random dispersal in theoretical populations. Biometrika, 38:196–218, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  51. M.G. Vicker. Eukaryotic cell locomotion depends on the propagation of self-organized reaction–diffusion waves and oscillations of actin filament assembly. Exp. Cell Res., 275:54–66, 2002.

    Article  Google Scholar 

  52. T. Bretschneider, K. Anderson, M. Ecke, A. Müller-Taubenberger, B. Schroth-Diez, H.C. Ishikawa-Ankerhold, and G. Gerisch. The three-dimensional dynamics of actin waves. Biophys. J., 96:2888–2900, 2009.

    Article  Google Scholar 

  53. A.E. Carlsson. Dendritic actin filament nucleation causes traveling waves and patches. Phys. Rev. Lett., 104:228102, 2010.

    Article  Google Scholar 

  54. J. Allard and A. Mogilner. Traveling waves in actin dynamics and cell motility. Curr. Opin. Cell Biol., 25:107–115, 2013.

    Article  Google Scholar 

Download references

Acknowledgements

The work described herein was initiated during the Collaborative Workshop for Women in Mathematical Biology hosted by the Institute for Pure and Applied Mathematics at the University of California, Los Angeles in June 2019. Funding for the workshop was provided by IPAM, the Association for Women in Mathematics’ NSF ADVANCE “Career Advancement for Women Through Research-Focused Networks” (NSF-HRD 1500481) and the Society for Industrial and Applied Mathematics. The authors thank the organizers of the IPAM-WBIO workshop (Rebecca Segal, Blerta Shtylla, and Suzanne Sindi) for facilitating this research.

R.L.P. is supported by the NSF Graduate Research Fellowships (NSF DGE 1752814). M.W.R. is supported in part by NSF DMS-1818833. A.T.D. is supported by NSF DMS-1554896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana T. Dawes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Association for Women in Mathematics and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Copos, C., Bannish, B., Gasior, K., Pinals, R.L., Rostami, M.W., Dawes, A.T. (2021). Connecting Actin Polymer Dynamics Across Multiple Scales. In: Segal, R., Shtylla, B., Sindi, S. (eds) Using Mathematics to Understand Biological Complexity. Association for Women in Mathematics Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-57129-0_2

Download citation

Publish with us

Policies and ethics