Skip to main content

Advertisement

Log in

PCR Development for Analysis of Some Type II Toxin–Antitoxin Systems, relJK, mazEF3, and vapBC3 Genes, in Mycobacterium tuberculosis and Mycobacterium bovis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Toxin–Antitoxin (TA) systems are some small genetic modules in bacteria that play significant roles in resistance and tolerance development to antibiotics. Whole genome sequencing (WGS) is an effective method to analyze TA systems in pathogenic Mycobacteria. However, this study aimed to use a simple and inexpensive PCR-Sequencing approach to investigate the type II TA system. Using data from the WGS of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv and Mycobacterium bovis (M. bovis) strain BCG, primers specific to the relJK, mazEF3, and vapBC3 gene families were designed by Primer3 software. Following that, a total of 90 isolates were examined using the newly developed PCR assay, consisting of 64 M. tuberculosis and 26 M. bovis isolates, encompassing both 45 rifampin-sensitive and 45 rifampin-resistant strains. Finally, 28 isolates (including 14 rifampin-resistant isolates) were sent for sequencing, and their sequences were aligned and compared to the mentioned reference sequences. The amplicons size of mazEF3, relJK, and vapBC3 genes were 825, 875, and 934 bp, respectively. Furthermore, all tested isolates showed the specific amplicons for these TA families. To evaluate the specificity of the primers, PCR was performed on S. aureus and E.coli isolates. None of the examined samples had the desired amplicons. Therefore, the primers had acceptable specificity. The results indicated that the developed PCR-Sequencing approach can be used to effectively investigate certain types of TA systems. Considering high costs of WGS and difficulty in interpreting its results, such a simple and inexpensive method is beneficial in the evaluation of TA systems in Mycobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data transparency is provided.

Code Availability

Not applicable.

References

  1. Agbota G, Bonnet M, Lienhardt C (2023) Management of tuberculosis infection: current situation, recent developments and operational challenges. Pathogens 12(3):362. https://doi.org/10.3390/pathogens12030362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD, Warren RM, van Pittius NCG (2010) Novel Mycobacterium tuberculosis complex pathogen M. mungi. Emerg Infect Dis 16(8):1296. https://doi.org/10.3201/eid1608.100314

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, Van Soolingen D (2012) Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 18(4):653. https://doi.org/10.3201/eid1804.110888

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang H, Liu M, Fan W, Sun S, Fan X (2022) The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Front Public Health 10:994745. https://doi.org/10.3389/fpubh.2022.994745

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merker M, Kohl TA, Barilar I, Andres S, Fowler PW, Chryssanthou E, Ängeby K, Jureen P, Moradigaravand D, Parkhill J (2020) Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Med 12(1):1–8. https://doi.org/10.1186/s13073-020-00726-5

    Article  CAS  Google Scholar 

  6. Gygli SM, Borrell S, Trauner A, Gagneux S (2017) Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 41(3):354–373. https://doi.org/10.1093/femsre/fux011

    Article  PubMed  CAS  Google Scholar 

  7. Yu X, Gao X, Zhu K, Yin H, Mao X, Wojdyla JA, Qin B, Huang H, Wang M, Sun Y-C (2020) Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun Biol 3(1):216. https://doi.org/10.1038/s42003-020-0941-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mikheecheva NE, Zaychikova MV, Melerzanov AV, Danilenko VN (2017) A nonsynonymous SNP catalog of Mycobacterium tuberculosis virulence genes and its use for detecting new potentially virulent sublineages. Genome Biol Evol 9(4):887–899. https://doi.org/10.1093/gbe/evx053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123. https://doi.org/10.1146/annurev-micro-092611-150159

    Article  PubMed  CAS  Google Scholar 

  10. Kang S-M, Kim D-H, Jin C, Lee B-J (2018) A systematic overview of type II and III toxin-antitoxin systems with a focus on druggability. Toxins 10(12):515. https://doi.org/10.3390/toxins10120515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Singh G, Yadav M, Ghosh C, Rathore JS (2021) Bacterial toxinantitoxin modules: classification, functions, and association with persistence. Curr Res Microb Sci. https://doi.org/10.1016/j.crmicr.2021.100047

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Yao J, Sun Y-C, Wood TK (2021) Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins. Trends Microbiol 29(5):388–393. https://doi.org/10.1016/j.tim.2020.12.001

    Article  PubMed  CAS  Google Scholar 

  13. Dai Z, Wu T, Xu S, Zhou L, Tang W, Hu E, Zhan L, Chen M, Yu G (2022) Characterization of toxin-antitoxin systems from public sequencing data: a case study in Pseudomonas aeruginosa. Front Microbiol 13:951774. https://doi.org/10.3389/fmicb.2022.951774

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aakre CD, Phung TN, Huang D, Laub MT (2013) A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol Cell 52(5):617–628. https://doi.org/10.1016/j.molcel.2013.10.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Boss L, Kędzierska B (2023) Bacterial toxin-antitoxin systems’ cross-interactions—implications for practical use in medicine and biotechnology. Toxins 15(6):380. https://doi.org/10.3390/toxins15060380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Korch SB, Malhotra V, Contreras H, Clark-Curtiss JE (2015) The Mycobacterium tuberculosis relBE toxin: antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 53:783–795. https://doi.org/10.1007/s12275-015-5333-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhao J-L, Liu W, Xie W-Y, Cao X-D, Yuan L (2018) Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China. Infect Drug Resist. https://doi.org/10.2147/IDR.S148648

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee K-Y, Lee B-J (2016) Structure, biology, and therapeutic application of toxin–antitoxin systems in pathogenic bacteria. Toxins 8(10):305. https://doi.org/10.3390/toxins8100305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Williams JJ, Hergenrother PJ (2012) Artificial activation of toxin–antitoxin systems as an antibacterial strategy. Trends Microbiol 20(6):291–298. https://doi.org/10.1016/j.tim.2012.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yamaguchi Y, Park J-H, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79. https://doi.org/10.1146/annurev-genet-110410-132412

    Article  PubMed  CAS  Google Scholar 

  21. Kochkaksaraei MB, Kaboosi H, Ghaemi EA (2019) Genetic variation of the Mycobacterium tuberculosis in north of Iran; the Golestan Province. Iran Red Crescent Med J. https://doi.org/10.5812/ircmj.91553

    Article  Google Scholar 

  22. World Health Organization (WHO) Dose optimization of rifampicin, isoniazid, pyrazinamide and ethambutol in the treatment of drug-susceptible tuberculosis. https://www.who.int/docs/default-source/hq-tuberculosis/dose-optimization-concept-note.pdf?sfvrsn=934ab3e2_2

  23. Chia B-S et al (2012) Use of multiplex allele-specific polymerase chain reaction (MAS-PCR) to detect multidrug-resistant tuberculosis in Panama. PLoS ONE 7(7):e40456

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  24. Singh R, Barry CE III, Boshoff HI (2010) The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 192(5):1279–1291. https://doi.org/10.1128/JB.01285-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Agarwal S, Tiwari P, Deep A, Kidwai S, Gupta S, Thakur KG, Singh R (2018) System wide analysis unravels differential regulation and in vivo essentiality of VapBC TA systems from Mycobacterium tuberculosis. J Infect Dis. https://doi.org/10.1093/infdis/jiy109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang S-P, Wang Q, Quan S-W, Yu X-Q, Wang Y, Guo D-D, Peng L, Feng H-Y, He Y-X (2020) Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. Biophys Rep 6:68–79. https://doi.org/10.1007/s41048-020-00109-8

    Article  CAS  Google Scholar 

  27. Yang M, Gao C, Wang Y, Zhang H, He Z-G (2010) Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS ONE 5(5):e10672. https://doi.org/10.1371/journal.pone.0010672

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  28. Solano-Gutierrez J, Pino C, Robledo J (2019) Toxin–antitoxin systems shows variability among Mycobacterium tuberculosis lineages. FEMS Microbiol Lett 366(1):276. https://doi.org/10.1093/femsle/fny276

    Article  CAS  Google Scholar 

  29. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio. https://doi.org/10.1128/mBio.00100-11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the staff of the Department of Pathobiology at Bu-Ali Sina University and the Microbiology Department of Golestan University of Medical Sciences, both in Iran, for their kind cooperation. Additionally, we extend our sincere thanks to the Razi Vaccine and Serum Institute in Iran for providing us with the Mycobacterium bovis isolates.

Funding

The work was supported by Bu-Ali Sina University (Grant Number: 1677), Hamedan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

(i) The conception or design of the study: A.M., E.A.G., P.M. (ii) the acquisition: M.S. analysis: M.S., P.M., E.A.G. interpretation of the data: M.S., A.M., P.M.; and (iii) writing of the manuscript: M.S., A.M., and P.M. All authors approved the final version.

Corresponding author

Correspondence to Abdolmajid Mohammadzadeh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare for this study.

Ethical Approval

This study was approved by the Ethical Committee of the Golestan University of Medical Sciences, Iran (Ethical code: IR.GOUMS.REC.1401.224).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafipour, M., Mohammadzadeh, A., Ghaemi, E.A. et al. PCR Development for Analysis of Some Type II Toxin–Antitoxin Systems, relJK, mazEF3, and vapBC3 Genes, in Mycobacterium tuberculosis and Mycobacterium bovis. Curr Microbiol 81, 90 (2024). https://doi.org/10.1007/s00284-023-03599-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03599-0

Navigation