Skip to main content
Log in

The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2015

Abstract

Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alber, T. 2009. Signaling mechanisms of the Mycobacterium tuberculosis receptor Ser/Thr protein kinases. Curr. Opin. Struct. Biol. 19, 650–657.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albrethsen, J., Agner, J., Piersma, S.R., Hø jrup, P., Pham, T.V., Weldingh, K., Jimenez, C.R., Andersen, P., and Rosenkrands, I. 2013. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteomic. 12, 1180–1191.

    Article  CAS  Google Scholar 

  • Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A., and Engelberg-Kulka, H. 2009. Escherichia coli MazF leads to the simultaneous selective synthesis of both death and survival proteins. PLoS Genet. 5, e1000390.

    Article  PubMed Central  PubMed  Google Scholar 

  • Amon, J., Brau, T., Grimrath, A., Hanssler, E., Hasselt, K., Holler, M., Jessberger, N., Ott, L., Szokol, J., Titgemeyer, F., et al. 2008a. Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-Type regulator GlnR. J. Bacteriol. 190, 7108–7116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amon, J., Titgemeyer, F., and Burkovski, A. 2008b. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J. Mol. Microbiol. Biotechnol. 17, 20–29.

    Article  PubMed  Google Scholar 

  • Arcus, V.L., Rainey, P.B., and Turner, S.J. 2005. The PIN-domain toxin-antitoxin array in mycobacteria. Trends Microbiol. 13, 360–365.

    Article  CAS  PubMed  Google Scholar 

  • Blower, T.R., Short, F.L., Rao, F., Mizuguchi, K., Pei, X.Y., Fineran, P.C., Luisi, B.F., and Salmond, G.P.C. 2012. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res. doi: 10.1093/nar/gks231.

    Google Scholar 

  • Christensen, S.K. and Gerdes, K. 2003. RelE toxins from bacteria and archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389–1400.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, S.K., Pedersen, K., Hansen, F.G., and Gerdes, K. 2003. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332, 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, M. and Gerdes, K. 2008. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Res. 36, 6472–6481.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danilchanka, O., Pavlenok, M., and Niederweis, M. 2008. Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob. Agents Chemother. 52, 3127–3134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demidenok, O.I., Kaprelyants, A.S., and Goncharenko, A.V. 2014. Toxin-antitoxin vapBC locus participates in formation of the dormant state in Mycobacterium smegmatis. FEMS Microbiol. Lett. 352, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., and Hazan, R. 2006. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet. 2, e135.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fozo, E.M., Makarova, K.S., Shabalina, S.A., Yutin, N., Koonin, E.V., and Storz, G. 2010. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 38, 3743–3759.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu, Z., Tamber, S., Memmi, G., Donegan, N.P., and Cheung, A.L. 2009. Overexpression of MazFSa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage. J. Bacteriol. 191, 2051–2059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerdes, K., Christensen, S.K., and Lobner-Olesen, A. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Gerdes, K., Rasmussen, P.B., and Molin, S. 1986. Unique type of plasmid maintenance function: postsegragational killing of plasmidfree cells. Proc. Natl. Acad. Sci. US. 83, 3116–3120.

    Article  CAS  Google Scholar 

  • Germain, E., Castro-Roa, D., Zenkin, N., and Gerdes, K. 2013. Molecular mechanism of bacterial persistence by HipA. Mol. Cel. 52, 248–254.

    Article  CAS  Google Scholar 

  • Goeders, N., Drèze, P.L., and Van Melderen, L. 2013. Relaxed cleavage specificity within the RelE toxin family. J. Bacteriol. 195, 2541–2549.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta, A. 2009. Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 290, 45.

    Article  CAS  PubMed  Google Scholar 

  • Gurvitz, A., Hiltunen, J.K., and Kastaniotis, A.J. 2008. Identification of a novel mycobacterial 3-hydroxyacyl-thioester dehydratase, HtdZ (Rv0130), by functional complementation in yeast. J. Bacteriol. 190, 4088–4090.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hallez, R., Geeraerts, D., Sterckx, Y., Mine, N., Loris, R., and Van Melderen, L. 2010. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol. Microbiol. 76, 719–732.

    Article  CAS  PubMed  Google Scholar 

  • Halvorsen, E.M., Williams, J.J., Bhimani, A.J., Billings, E.A., and Hergenrother, P.J. 2011. Txe, an endoribonuclease of the enterococcal Axe-Txe toxin-antitoxin system, cleaves mRNA and inhibits protein synthesis. Microbiolog. 157, 387–397.

    CAS  Google Scholar 

  • Harth, G.a.M.A.H. 1999. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins ad potential novel drug targets. J. Exp. Med. 189, 1425–1435.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurley, J.M., Cruz, J.W., Ouyang, M., and Woychik, N.A. 2011. Bacterial toxin RelE mediates frequent codon-independent mRNA cleavage from the 5′ end of coding regions in vivo. J. Biol. Chem. 286, 14770–14778.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hurley, J.M. and Woychik, N.A. 2009. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J. Biol. Chem. 284, 18605–18613.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen, R.B. and Gerdes, K. 1995. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17, 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, U., Pogliano, J., Helinski, D.R., and Konieczny, I. 2002. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, M.G., Pandey, D.P., Jaskolska, M., and Gerdes, K. 2009. HicA of Escherichia coli defines a novel family of translationindependent mRNA interferases in bacteria and Archaea. J. Bacteriol. 191, 1191–1199.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N.Q., and Glaser, G. 2013. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4, doi: 10.1038/ncomms4001.

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13.

    Article  CAS  PubMed  Google Scholar 

  • Korch, S.B., Contreras, H., and Clark-Curtiss, J.E. 2009. Three Mycobacterium tuberculosis Rel toxin-antitoxin modules inhibit mycobacterial growth and are expressed in infected human macrophages. J. Bacteriol. 191, 1618–1630.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Korch, S.B., Henderson, T., and Hill, T.M. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199–1213.

    Article  CAS  PubMed  Google Scholar 

  • Korch, S.B. and Hill, T.M. 2006. Ectopic overexpression of wildtype and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. J. Bacteriol. 188, 3826–3836.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Drèze, P., and Van Melderen, L. 2011. Diversity of bacterial type IItoxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39, 5513–5525.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopes, A.P.Y., Lopes, L.M., Fraga, T.R., Chura-Chambi, R.M., Sanson, A.L., Cheng, E., Nakajima, E., Morganti, L., and Martins, E.A.L. 2014. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 9, e101678.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maisonneuve, E. and Gerdes, K. 2014. Molecular mechanisms underlying bacterial persisters. Cel. 157, 539–548.

    Article  CAS  Google Scholar 

  • Malhotra, V., Arteaga-Cortes, L.T., Clay, G., and Clark-Curtiss, J.E. 2010. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiolog. 156, 2829–2841.

    CAS  Google Scholar 

  • Malhotra, V., Tyagi, J.S., and Clark-Curtiss, J.E. 2009. DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: Links to asparagine metabolism. Tuberculosis 89, 169.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marrakchi, H., Ducasse, S., Labesse, G., Montrozier, H., Margeat, E., Emorine, L., Charpentier, X., Daffe, M., and Quemard, A. 2002. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiolog. 148, 951–960.

    CAS  Google Scholar 

  • Miallau, L., Jain, P., Arbing, M.A., Cascio, D., Phan, T., Ahn, C.J., Chan, S., Chernishof, I., Maxson, M., Chiang, J., et al. 2013. Comparative proteomics identifies the cell-associated lethality of M. tuberculosis RelBE-like toxin-antitoxin complexes. Structur. 21, 627–637.

    Article  CAS  Google Scholar 

  • Möker, N., Dean, C.R., and Tao, J. 2010. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol. 192, 1946–1955.

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Gómez, A.J., Santos-Sierra, S., Berzal-Herranz, A., Lemonnier, M., and Díaz-Orejas, R. 2004. Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin. FEBS Lett. 567, 316–320.

    Article  PubMed  Google Scholar 

  • Nariya, H. and Inouye, M. 2008. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cel. 132, 55–66.

    Article  CAS  Google Scholar 

  • Neubauer, C., Gao, Y.G., Andersen, K.R., Dunham, C.M., Kelley, A.C., Hentschel, J., Gerdes, K., Ramakrishnan, V., and Brodersen, D.E. 2009. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cel. 139, 1084–1095.

    Article  CAS  Google Scholar 

  • O’Hare, H.M., Durán, R., Cerveñansky, C., Bellinzoni, M., Wehenkel, A.M., Pritsch, O., Obal, G., Baumgartner, J., Vialaret, J., Johnsson, K., et al. 2008. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol. 70, 1408–1423.

    Article  PubMed  Google Scholar 

  • Orgura, T. and Hiraga, S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. US. 80, 4784–4788.

    Article  Google Scholar 

  • Pandey, D.P. and Gerdes, K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parish, T., Roberts, G., Laval, F., Schaeffer, M., Daffe, M., and Duncan, K. 2007. Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG. J. Bacteriol. 189, 3721–3728.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen, K., Zavialov, A.V., Pavlov, M.Y., Elf, J., Gerdes, K., and Ehrenberg, M. 2003. The bacterial toxin RelE displays codonspecific cleavage of mRNAs in the ribosomal A site. Cel. 112, 131–140.

    Article  CAS  Google Scholar 

  • Provvedi, R., Boldrin, F., Falciani, F., Palù, G., and Manganelli, R. 2009. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiolog. 155, 1093–1102.

    CAS  Google Scholar 

  • Prysak, M.H., Mozdzierz, C.J., Cook, A.M., Zhu, L., Zhang, Y., Inouye, M., and Woychik, N.A. 2009. Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and framedependent mRNA cleavage. Mol. Microbiol. 71, 1071–1087.

    Article  CAS  PubMed  Google Scholar 

  • Rachman, H., Kim, N., Ulrichs, T., Baumann, S., Pradl, L., Eddine, A.N., Bild, M., Rother, M., Kuban, R.J., Lee, J.S., et al. 2006. Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation. PLoS One 1, e29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramage, H.R., Connolly, L.E., and Cox, J.S. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767.

    Article  PubMed Central  PubMed  Google Scholar 

  • Robson, J., McKenzie, J.L., Cursons, R., Cook, G.M., and Arcus, V.L. 2009. The vapBC operon from Mycobacterium smegmatis is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. J. Mol. Biol. 390, 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Saini, D.K., Malhotra, V., Dey, D., Pant, N., Das, T.K., and Tyagi, J.S. 2004. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiolog. 150, 865–875.

    CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Schifano, J.M., Edifor, R., Sharp, J.D., Ouyang, M., Konkimalla, A., Husson, R.N., and Woychik, N.A. 2013. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. Proc. Natl. Acad. Sci. US. 110, 8501–8506.

    Article  CAS  Google Scholar 

  • Schifano, J.M., Vvedenskaya, I.O., Knoblauch, J.G., Ouyang, M., Nickels, B.E., and Woychik, N.A. 2014. An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat. Commun. 5, 3538.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharp, J.D., Cruz, J.W., Raman, S., Inouye, M., Husson, R.N., and Woychik, N.A. 2012. Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J. Biol. Chem. 287, 12835–12847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh, R., Barry, C.E., III, and Boshoff, H.I.M. 2010. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J. Bacteriol. 192, 1279–1291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snapper, S.B., Melton, R.E., Mustafa, S., Keiser, T., and Jacobs, W.R.Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1999.

    Article  CAS  PubMed  Google Scholar 

  • Spoering, A.L. and Lewis, K. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stahl, C., Kubetzko, S., Kaps, I., Seeber, S., Engelhardt, H., and Niederweis, M. 2001. MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol. Microbiol. 40, 451–464.

    Article  CAS  PubMed  Google Scholar 

  • Tashiro, Y., Kawata, K., Taniuchi, A., Kakinuma, K., May, T., and Okabe, S. 2012. RelE-mediated dormancy is enhanced at high cell density in Escherichia coli. J. Bacteriol. 194, 1169–1176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari, P., Arora, G., Singh, M., Kidwai, S., Narayan, O.P., and Singh, R. 2015. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat. Commun. 6, 6059.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, A., Dewan, P.C., Siddique, S.A., and Varadarajan, R. 2014. MazF-induced growth inhibition and persister generation in Escherichia coli. J. Biol. Chem. 289, 4191–4205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuchimoto, S., Ohtsubo, H., and Ohtsubo, E. 1988. Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J. Bacteriol. 170, 1461–1466.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A.C., Engelberg-Kulka, H., and Moll, I. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cel. 147, 147–157.

    Article  CAS  Google Scholar 

  • Winther, K.S., Brodersen, D.E., Brown, A.K., and Gerdes, K. 2013. VapC20 of Mycobacterium tuberculosis cleaves the Sarcin-Ricin loop of 23S rRNA. Nat. Commun. 4, 2796.

    Article  PubMed  Google Scholar 

  • Winther, K.S. and Gerdes, K. 2011. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl. Acad. Sci. US. 108, 7403–7407.

    Article  CAS  Google Scholar 

  • Wolschendorf, F., Mahfoud, M., and Niederweis, M. 2007. Porins are required for uptake of phosphates by Mycobacterium smegmatis. J. Bacteriol. 189, 2435–2442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., Park, J.H., and Inouye, M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCUspecific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, M., Gao, C., Wang, Y., Zhang, H., and He, Z.G. 2010. Characterization of the interaction and cross-regulation of three Mycobacterium tuberculosis RelBE modules. PLoS One 5, e10672.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y. and Inouye, M. 2009. The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin. J. Biol. Chem. 284, 6627–6638.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, J., Hara, H., Kato, I., and Inouye, M. 2005. Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. J. Biol. Chem. 280, 3143–3150.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhang, J., Hoeflich, K.P., Ikura, M., Qing, G., and Inouye, M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cel. 12, 913–923.

    Article  CAS  Google Scholar 

  • Zhu, L., Inoue, K., Yoshizumi, S., Kobayashi, H., Zhang, Y., Ouyang, M., Kato, F., Sugai, M., and Inouye, M. 2009. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J. Bacteriol. 191, 3248–3255.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu, L., Phadtare, S., Nariya, H., Ouyang, M., Husson, R.N., and Inouye, M. 2008. The mRNA interferases, MazF-mt3 and MazFmt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA. Mol. Microbiol. 69, 559–569.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaleen B. Korch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korch, S.B., Malhotra, V., Contreras, H. et al. The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol. 53, 783–795 (2015). https://doi.org/10.1007/s12275-015-5333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5333-8

Keywords

Navigation