Skip to main content
Log in

Description of Mycolicibacterium arenosum sp. nov. Isolated from Coastal Sand on the Yellow Sea Coast

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-staining-positive, aerobic, non-spore-forming bacterium was isolated from coastal sand samples from Incheon in the Republic of Korea and designated as strain CAU 1645T. The optimum conditions for growth were observed at 30 °C in growth media containing 1% (w/v) NaCl at pH 9.0. The predominant respiratory quinone was MK-9 and the major fatty acids were C16:0, C17:1 w7c, and summed feature 7. Similarly, the 16S rRNA gene sequence exhibited the highest similarity with Mycolicibacterium bacteremicum DSM 45578T and Mycolicibacterium neoaurum JCM 6365T, both of which exhibited similarity rates of 97.2%. The genomic DNA G+C content was 68.2%. The whole genome of strain CAU 1645T was obtained and annotated with annotation using RAST server. The pan-genome analysis was determined using Prokka, Roary, and Phandango. In the pan-genome analysis, the strain CAU 1645T shared 40 core genes with closely related Mycolicibacterium species, including the AcpM gene, the meromycolate extension acyl carrier protein involved in forming impermeable cell walls in mycobacteria. Therefore, our findings demonstrated that the isolate represents a novel species of the genus Mycolicibacterium, for which we propose the name Mycolicibacterium arenosum sp. nov. The type strain is CAU 1645T (= KCTC 49724T = MCCC 1K07087T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The GenBank/EMBL/DDBJ accession numbers of strain CAU 1645T including 16S rRNA gene sequence are OK053000 and the genomic sequence is JANDBD000000000.

References

  1. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67. https://doi.org/10.3389/fmicb.2018.00067

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parte AC, Carbasse JS, Meier-Kolthoff JP et al (2020) List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607. https://doi.org/10.1099/ijsem.0.004332

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nouioui I, Sangal V, Cortes-Albayay C et al (2019) Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme. Int J Syst Evol Microbiol 69:3465–3471. https://doi.org/10.1099/ijsem.0.003644

    Article  PubMed  CAS  Google Scholar 

  4. Konjek J, Souded S, Guerardel Y et al (2016) Mycobacterium lutetiense sp. nov., Mycobacterium montmartrense sp. nov. and Mycobacterium arcueilense sp. nov., members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system. Int J Syst Evol Microbiol 66:3694–3702. https://doi.org/10.1099/ijsem.0.001253

    Article  PubMed  CAS  Google Scholar 

  5. Dahl JL, Gatlin W III, Tran PM et al (2021) Mycolicibacterium nivoides sp. nov. isolated from a peat bog. Int J Syst Evol Microbiol 71:004438. https://doi.org/10.1099/ijsem.0.004438

    Article  PubMed Central  CAS  Google Scholar 

  6. Nam SW, Kim W, Chun J et al (2004) Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 54:1209–1212. https://doi.org/10.1099/ijs.0.02939-0

    Article  PubMed  CAS  Google Scholar 

  7. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.0000/PMID3447015

    Article  PubMed  CAS  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  11. Yoon SH, Ha SM, Lim JM et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  PubMed  CAS  Google Scholar 

  12. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gillespie JJ, Wattam AR, Cammer SA et al (2011) PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 79:4286–4298. https://doi.org/10.1128/iai.00207-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Blin K, Shaw S, Kloosterman AM et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  PubMed  CAS  Google Scholar 

  16. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Na SI, Kim YO, Yoon SH et al (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  Google Scholar 

  18. Bowman JP (2000) Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868. https://doi.org/10.1099/00207713-50-5-1861

    Article  PubMed  CAS  Google Scholar 

  19. Smibert RM, Kreg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  20. Sasser M (2006) Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). MIDI Technical Note 101. Newark: Microbial ID

  21. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208. https://doi.org/10.1016/S0580-9517(08)70410-0

    Article  CAS  Google Scholar 

  22. Lee I, Ouk Kim Y, Park SC et al (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760

    Article  PubMed  CAS  Google Scholar 

  23. Meier-Kolthoff JP, Göker M, Spröer C et al (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418. https://doi.org/10.1007/s00203-013-0888-4

    Article  PubMed  CAS  Google Scholar 

  24. Kremer L, Nampoothiri KM, Lesjean S et al (2001) Biochemical Characterization of Acyl Carrier Protein (AcpM) and Malonyl-CoA: AcpM Transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J Bio Chem 276:27967–27974. https://doi.org/10.1074/jbc.M103687200

    Article  CAS  Google Scholar 

  25. Lasch C, Gummerlich N, Myronovskyi M et al (2020) Loseolamycins: a group of new bioactive alkylresorcinols produced after heterologous expression of a type III PKS from Micromonospora endolithica. Molecules 25:4594. https://doi.org/10.3390/molecules25204594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Institute of Biological Resources (NIBR) funded by the Ministry of the Environment (MOE) of the Republic of Korea (NIBR202102205), the National Research Foundation of Korea (NRF) (NRF-2021R1C1C2003223), and Chung-Ang University Young Scientist Scholarship in 2017.

Author information

Authors and Affiliations

Authors

Contributions

WK conceived and designed the study. JJ, SA, TCT, VW, and J-SL performed the experiments. J-HK, J-HY, and AS carried out the statistical analyses. JJ, SA, and TCT drafted the manuscript, with major input from WK.

Corresponding author

Correspondence to Wonyong Kim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Research Involving Human and Animal Rights

Our research did not include any human subjects and animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1029 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Ahn, S., Truong, T.C. et al. Description of Mycolicibacterium arenosum sp. nov. Isolated from Coastal Sand on the Yellow Sea Coast. Curr Microbiol 81, 73 (2024). https://doi.org/10.1007/s00284-023-03587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03587-4

Navigation