Skip to main content
Log in

When should a DDH experiment be mandatory in microbial taxonomy?

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

DNA–DNA hybridizations (DDH) play a key role in microbial species discrimination in cases when 16S rRNA gene sequence similarities are 97 % or higher. Using real-world 16S rRNA gene sequences and DDH data, we here re-investigate whether or not, and in which situations, this threshold value might be too conservative. Statistical estimates of these thresholds are calculated in general as well as more specifically for a number of phyla that are frequently subjected to DDH. Among several methods to infer 16S gene sequence similarities investigated, most of those routinely applied by taxonomists appear well suited for the task. The effects of using distinct DDH methods also seem to be insignificant. Depending on the investigated taxonomic group, a threshold between 98.2 and 99.0 % appears reasonable. In that way, up to half of the currently conducted DDH experiments could safely be omitted without a significant risk for wrongly differentiated species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Auch A, Von Jan M, Klenk H-P, Göker M (2010a) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. doi:10.4056/sigs.531120

    Article  PubMed  Google Scholar 

  • Auch A, Klenk H-P, Göker M (2010b) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. doi:10.4056/sigs.541628

    Article  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Cui H-L, Zhou P-J, Oren A, Liu S-J (2009) Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13:31–37. doi:10.1007/s00792-008-0194-2

    Article  PubMed  CAS  Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142. doi:10.1111/j.1432-1033.1970.tb00830.x

    Article  PubMed  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592. doi:10.1099/00207713-47-2-590

    Article  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229. doi:10.1099/00207713-39-3-224

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  • Goris J, Konstantinidis K, Klappenbach J et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi:10.1099/ijs.0.64483-0

    Article  PubMed  CAS  Google Scholar 

  • Harrell FE, Lee KL, Califf RM et al (1984) Regression modelling strategies for improved prognostic prediction. Stat Med 3:143–152. doi:10.1002/sim.4780030207

    Article  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Henz SR, Huson DH, Auch AF et al (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21:2329–2335. doi:10.1093/bioinformatics/bth324

    Article  PubMed  CAS  Google Scholar 

  • Jukes T, Cantor C (1969) Evolution of protein molecules. Academic Press, New York

    Google Scholar 

  • Keswani J, Whitman WB (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678

    PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Klenk H-P, Göker M (2010) En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 33:175–182. doi:10.1016/j.syapm.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509. doi:10.1016/j.mib.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  • Kostinek M, Pukall R, Rooney AP et al (2005) Lactobacillus arizonensis is a later heterotypic synonym of Lactobacillus plantarum. Int J Syst Evol Microbiol 55:2485–2489. doi:10.1099/ijs.0.63880-0

    Article  PubMed  CAS  Google Scholar 

  • Lagier J-C, Karkouri K El, Rivet R et al (2013) Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Stand Genomic Sci. doi: 10.4056/sigs.3246665

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. doi:10.1186/1471-2105-14-60

    Article  PubMed  Google Scholar 

  • Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press, Oxford

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc 135:370–384

    Google Scholar 

  • Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. doi:10.1073/pnas.0906412106

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. doi:10.1099/00207713-44-4-846

    Article  CAS  Google Scholar 

  • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF (2000) Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med 19:1059–1079

    Article  PubMed  CAS  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc 36:111–147. doi:10.2307/2984809

    Google Scholar 

  • Swezey JL, Nakamura LK, Abbott TP, Peterson RE (2000) Lactobacillus arizonensis sp. nov., isolated from jojoba meal. Int J Syst Evol Microbiol 50:1803–1809. doi:10.1099/00207713-50-5-1803

    PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://r-project.org/

  • Tindall BJ, Kampfer P, Euzeby JP, Oren A (2006) Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol 56:2715–2720. doi:10.1099/ijs.0.64780-0

    Article  PubMed  Google Scholar 

  • Tindall B, Rosselló-Móra R, Busse HJ et al (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. doi:10.1099/ijs.0.016949-0

    Article  PubMed  CAS  Google Scholar 

  • Tourova TP, Antonov AS (1988) Identification of microorganisms by rapid DNA–DNA hybridization. In: Colwell RR, Grigorova R (eds) Methods in microbiology. Academic Press, London, pp 333–355

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464. doi:10.1099/00207713-37-4-463

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Erko Stackebrandt for providing data and for helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Göker.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 373 kb)

Supplementary material 2 (PDF 1262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier-Kolthoff, J.P., Göker, M., Spröer, C. et al. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195, 413–418 (2013). https://doi.org/10.1007/s00203-013-0888-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0888-4

Keywords

Navigation