Skip to main content

Advertisement

Log in

Mutanase from Trichoderma harzianum inductively Produced by Mutan: Short-Term Treatment to Degrade Mature Streptococcus mutans Biofilm

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the disruptive effect of fungal mutanase against cariogenic biofilm after short-term treatment. For that, mature Streptococcus mutans biofilms (n = 9) were exposed to active or inactivated enzymes produced by Trichoderma harzianum for 1 min, two times per day. Biofilms were analyzed by amount of matrix water-insoluble polysaccharides, bacterial viability, acidogenicity, and morphology by scanning electron microscopy (SEM). The group treated with active enzymes (AE) had a significantly lower amount of insoluble polysaccharides (893.30 ± 293.69) when compared to the negative control group (NaCl, 2192.59 ± 361.96), yet no significant difference was found when comparing to the positive control group (CHX, 436.82 ± 151.07). Also, there was no significant effect on bacteria metabolism and viability (P-value < 0.05). Data generated by the quantitative analysis were confirmed through scanning electron microscopy images. Thus, fungal mutanase degraded the biofilm after a short-term treatment without interfering with bacterial viability and metabolism. Such findings offer insight to the development of routine oral care products containing this input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Bowen WH, Burne RA, Wu H, Koo H (2018) Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 26:229–242. https://doi.org/10.1016/j.tim.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Radaic A, Kapila YL (2021) The oralome and its dysbiosis: new insights into oral microbiome–host interactions. Comput Struct Biotechnol J 19:1335–1360. https://doi.org/10.1016/j.csbj.2021.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 13(5):10. https://doi.org/10.3389/fcimb.2015.00010

    Article  CAS  Google Scholar 

  4. Aires CP, Tenuta LM, Carbonero ER, Sassaki GL, Iacomini M, Cury JA (2011) Structural characterization of exopolysaccharides from biofilm of a cariogenic streptococci. Carbohydr Polym 84:1215–1220

    Article  CAS  Google Scholar 

  5. Mattos-Graner RO, Smith DJ, King WF, Mayer MP (2000) Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79:1371–1377

    Article  CAS  PubMed  Google Scholar 

  6. Nobre dos Santos M, Melo dos Santos L, Francisco SB, Cury JA (2002) Relationship among dental plaque composition, daily sugar exposure and caries in the primary dentition. Caries Res 36:347–352

    Article  CAS  PubMed  Google Scholar 

  7. Bowen WH, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86. https://doi.org/10.1159/000324598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zero DT, van Houte J, Russo J (1986) The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans. J Dent Res 65:918–923

    Article  CAS  PubMed  Google Scholar 

  9. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshirem MT, Tabchoury CP (2000) Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res 34:491–497

    Article  CAS  PubMed  Google Scholar 

  10. Gregoire S, Singh AP, Vorsa N, Koo H (2007) Influence of cranberry phenolics on glucan synthesis by glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 103:1960–1968. https://doi.org/10.1111/j.1365-2672.2007.03441

    Article  CAS  PubMed  Google Scholar 

  11. Lim KS, Kam PC (2008) Chlorhexidine–pharmacology and clinical applications. Anaesth Intensive Care 36:502–512. https://doi.org/10.1177/0310057X0803600404

    Article  PubMed  Google Scholar 

  12. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A (2019) Resistance toward chlorhexidine in oral bacteria—is there cause for concern? Front Microbiol 10:587. https://doi.org/10.3389/fmicb.2019.00587

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marsh PD, Moter A, Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontol 2000 55:16–35. https://doi.org/10.1111/j.1600-0757.2009.00339.x

    Article  PubMed  Google Scholar 

  14. Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28:668–681. https://doi.org/10.1016/j.tim.2020.03.016

    Article  CAS  PubMed  Google Scholar 

  15. Marsh PD, Head DA, Devine DA (2015) Ecological approaches to oral biofilms: control without killing. Caries Res 49:46–54. https://doi.org/10.1159/000377732

    Article  CAS  PubMed  Google Scholar 

  16. Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J (2015) (1→3)-α-d-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol 79:761–778. https://doi.org/10.1016/j.ijbiomac.2015.05.052

    Article  CAS  PubMed  Google Scholar 

  17. Wiater A, Pleszczyńska M, Szczodrak J, Janusz G (2012) Comparative studies on the induction of Trichoderma harzianum mutanase by α-(1→3)-glucan-rich fruiting bodies and mycelia of Laetiporus sulphureus. Int J Mol Sci 13:9584–9598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guggenheim B, Regolati B, Mühlemann HR (1972) Caries and plaque inhibition by mutanase in rats. Caries Res 6:289–297. https://doi.org/10.1159/000259808

    Article  CAS  PubMed  Google Scholar 

  19. Wiater A, Szczodrak J, Rogalski J (2004) Hydrolysis of mutan and prevention of its formation in streptococcal films by fungal α-d-glucanases. Process Biochem 39:1481–1489

    Article  CAS  Google Scholar 

  20. Wiater A, Szczodrak J, Pleszczyńska M (2008) Mutanase induction in Trichoderma harzianum by cell wall of Laetiporus sulphureus and its application for mutan removal from oral biofilms. J Microbiol Biotechnol 18:1335–1341

    CAS  PubMed  Google Scholar 

  21. Wiater A, Janczarek M, Pleszczyńska M, Szczodrak J (2011) Identification and characterization of the Trichoderma harzianum gene encoding alpha-1,3-glucanase involved in streptococcal mutan degradation. Pol J Microbiol 60:293–301

    Article  CAS  PubMed  Google Scholar 

  22. Wiater A, Janczarek M, Choma A, Próchniak K, Komaniecka I, Szczodrak J (2013) Water-soluble (1→3), (1→4)-α-d-glucan from mango as a novel inducer of cariogenic biofilm-degrading enzyme. Int J Biol Macromol 58:199–205. https://doi.org/10.1016/j.ijbiomac.2013.03.063

    Article  CAS  PubMed  Google Scholar 

  23. Wiater A, Wasko A, Bialas W, Pleszczyńska M, Polak-Berecka M, Szczodrak J, Kubik-Komar A (2014) Optimization of mutanase production by Trichoderma harzianum. Afr J Biotechnol 13:2538–2546

    Article  Google Scholar 

  24. Kelstrup J, Holm-Pedersen P, Poulsen S (1978) Reduction of the formation of dental plaque and gingivitis in humans by crude mutanase. Scand J Dent Res 86:93–102. https://doi.org/10.1111/j.1600-0722.1978.tb00613.x

    Article  CAS  PubMed  Google Scholar 

  25. Guggenheim B, Regolati B, Schmid R, Mühlemann HR (1980) Effects of the topical application of mutanase on rat caries. Caries Res 14:128–135. https://doi.org/10.1159/000260447

    Article  CAS  PubMed  Google Scholar 

  26. Wiater A, Pleszczyńska M, Rogalski J, Szajnecka L, Szczodrak J (2013) Purification and properties of an α-(1 → 3)-glucanase (EC 3.2.1.84) from Trichoderma harzianum and its use for reduction of artificial dental plaque accumulation. Acta Biochim Pol 60:123–128

    Article  CAS  PubMed  Google Scholar 

  27. Huang R, Li M, Gregory RL (2011) Bacterial interactions in dental biofilm. Virulence 2(5):435–444. https://doi.org/10.4161/viru.2.5.16140

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marsh PD, Bradshaw DJ (1995) Dental plaque as a biofilm. J Ind Microbiol 15(3):169–175. https://doi.org/10.1007/BF01569822

    Article  CAS  PubMed  Google Scholar 

  29. Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI (2021) Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models. iScience 24(5):102443. https://doi.org/10.1016/j.isci.2021.102443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Imfeld TN, Lutz F (1980) Intraplaque acid formation assessed in vivo in children and young adults. Pediatr Dent 2:87–93

    Google Scholar 

  31. Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–789. https://doi.org/10.1093/jac/dkg449

    Article  CAS  PubMed  Google Scholar 

  32. Aires CP, Del Bel Cury AA, Tenuta LM, Klein MI, Koo H, Duarte S, Cury JA (2008) Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res 42:380–386

    Article  CAS  PubMed  Google Scholar 

  33. Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation and partial purification of xylanases from an Aspergillus sp. World J Microbiol Biotechnol 11:242–243

    Article  CAS  PubMed  Google Scholar 

  34. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Ccahuana-Vásquez RA, Cury JA (2010) S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res 24:135–141

    Article  PubMed  Google Scholar 

  37. Duarte S, Klein MI, Aires CP, Cury JA, Bowen WH, Koo H (2008) Influences of starch and sucrose on Streptococcus mutans biofilms. Oral Microbiol Immunol 23:206–212

    Article  CAS  PubMed  Google Scholar 

  38. DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  39. Krzyściak W, Kościelniak D, Papież M, Vyhouskaya P, Zagórska-Świeży K, Kołodziej I, Bystrowska B, Jurczak A (2017) Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients 9:1242. https://doi.org/10.3390/nu9111242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fuglsang CC, Berka RM, Wahleithner JA, Kauppinen S, Shuster JR, Rasmussen G, Halkier T, Dalboge H, Henrissat B (2000) Biochemical analysis of recombinant fungal mutanases. A new family of alpha-1,3-glucanases with novel carbohydrate-binding domains. J Biol Chem 275:2009–2018. https://doi.org/10.1074/jbc.275.3.2009

    Article  CAS  PubMed  Google Scholar 

  41. Grün CH, Dekker N, Nieuwland AA, Klis FM, Kamerling JP, Vliegenthart JF, Hochstenbach F (2006) Mechanism of action of the endo-(1→3)-alpha-glucanase MutAp from the mycoparasitic fungus Trichoderma harzianum. FEBS Lett 580:3780–3786. https://doi.org/10.1016/j.febslet.2006.05.062

    Article  CAS  PubMed  Google Scholar 

  42. Hayacibara MF, Koo H, Vacca-Smith AM, Kopec LK, Scott-Anne K, Cury JA, Bowen WH (2004) The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res 339:2127–2137. https://doi.org/10.1016/j.carres.2004.05.031

    Article  CAS  PubMed  Google Scholar 

  43. Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE (2017) Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol 6(4):1

    CAS  Google Scholar 

  44. Salvatierra CM (2014) Microbiology: morphological, biochemical and methodological aspects. Saraiva Educação, São Paulo

    Google Scholar 

  45. Ren Z, Kim D, Paula AJ, Hwang G, Liu Y, Li J, Daniell H, Koo H (2019) Dual-targeting approach degrades biofilm matrix and enhances bacterial killing. J Dent Res 98:322–330. https://doi.org/10.1177/0022034518818480

    Article  CAS  PubMed  Google Scholar 

  46. Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P (2020) Innovative strategies toward the disassembly of the EPS-matrix in bacterial biofilms. Front Microbiol 11:952

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marsh PD, Do T, Beighton D, Devine DA (2016) Influence of saliva on the oral microbiota. Periodontol 2000 70:80–92. https://doi.org/10.1111/prd.12098

    Article  PubMed  Google Scholar 

  48. Kuang X, Chen V, Xu X (2018) Novel approaches to the control of oral microbial biofilms. Biomed Res Int. https://doi.org/10.1155/2018/6498932

    Article  PubMed  PubMed Central  Google Scholar 

  49. Amaechi BT, Tenuta LMA, Ricomini Filho AP, Cury JA (2019) Protocols to study dental caries in vitro: microbial caries models. Methods Mol Biol 1922:357–368. https://doi.org/10.1007/978-1-4939-9012-2_32

    Article  CAS  PubMed  Google Scholar 

  50. Letieri AS, Freitas-Fernandes LB, Souza IPR, Valente AP, Fidalgo TKS (2022) Metabolomic signatures of in vitro biofilm maturation of Streptococcus mutans. Curr Microbiol 79(3):86. https://doi.org/10.1007/s00284-022-02778-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Jaime Aparecido Cury and Prof. Dr. Livia Maria Andaló Tenuta from the Piracicaba Dental School-UNICAMP (São Paulo, Brazil) for providing Streptotoccus mutans UA159. We also thank Dr Rodrigo Ferreira Silva from the Laboratory of Scanning Electronic Microscopy and Elementary Microanalysis (Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil) for technical assistance during the acquisition of SEM images and Maria Gerusa Brito Aragão for the critical review of the manuscript. This work was funded by the São Paulo Research Foundation (FAPESP) [Grant Numbers 2019/19162-7 and 2020/07315-0].

Funding

São Paulo Research Foundation (FAPESP) [Grant Numbers 2019/19162–7 and 2020/07315–0].

Author information

Authors and Affiliations

Authors

Contributions

JSPB, HC, CPA: conceptualization and methodology; JSPB, NGSL, ACMP, NGdR-G: investigation and formal analysis; JSPB, NGSL, ACMP: writing—original draft; NGdR-G, HC, CPA: writing—review & editing. All authors approved the final submitted version.

Corresponding author

Correspondence to Carolina Patrícia Aires.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors consent publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bem, J.S.P., Lacerda, N.G.S., Polizello, A.C.M. et al. Mutanase from Trichoderma harzianum inductively Produced by Mutan: Short-Term Treatment to Degrade Mature Streptococcus mutans Biofilm. Curr Microbiol 80, 312 (2023). https://doi.org/10.1007/s00284-023-03417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03417-7

Navigation