Skip to main content
Log in

Biosynthesis and Gene Regulation of Rhamnolipid Congeners

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rhamnolipid congeners have been widely used in agriculture and biomedicine as potent surfactants. They have recently attracted attention due to their diverse and versatile biological functions, which include an important bacterial virulence factor that makes them attractive targets for research into biosynthetic pathways and gene regulation. The intricate gene expression and regulation network controlling their biosynthesis remain to be completely understood. This article summarizes current knowledge about the biosynthesis pathways and regulatory mechanisms of rhamnolipid congeners, that meet the pharmacological needs of human health and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raza ZA, Khalid ZM, Banat IM (2009) Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Heal 44:1367–1373. https://doi.org/10.1080/10934520903217138

    Article  CAS  Google Scholar 

  2. Nakata K, Ishigami Y (1999) A facile procedure of remediation for oily waste with rhamnolipid biosurfactant. J Environ Sci Heal 34:1129–1142. https://doi.org/10.1080/10934529909376886

    Article  Google Scholar 

  3. Chen J, Wu Q, Hua Y, Chen J, Zhang H, Wang H (2017) Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol 101:1–11. https://doi.org/10.1016/j.actamat.2017.07.029

    Article  CAS  Google Scholar 

  4. Brenner DJ, McWhorter AC, Kai A, Steigerwalt AG, Farmer JJ (1986) Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol 23:1114–1120. https://doi.org/10.1128/jcm.23.6.1114-1120.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ownsend SM, Hurrell E, Caubilla-Barron J, LocCarrillo C, Forsythe SJ (2008) Characterization of 967 an extended-spectrum beta-lactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. Microbiology 154:3659–3667. https://doi.org/10.1099/mic.0.2008/021980-0

    Article  CAS  Google Scholar 

  6. Edwards JR, Hayashi JA (1965) Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys 111:415–421. https://doi.org/10.1016/0003-9861(65)90204-3

    Article  CAS  PubMed  Google Scholar 

  7. Bazire A, Dufour A (2014) The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 14:1–9. https://doi.org/10.1186/1471-2180-14-160

    Article  Google Scholar 

  8. Andreadou E, Pantazaki AA, Daniilidou M, Tsolaki M (2017) Rhamnolipids, microbial virulence factors, in alzheimer’s disease. J Alzheimer’s Dis 59:209–222. https://doi.org/10.3233/JAD-161020

    Article  CAS  Google Scholar 

  9. Abdelmawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164. https://doi.org/10.1016/j.chembiol.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  10. Six DA, Yuan Y, Leeds JA, Meredith TC (2014) Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility. Antimicrob Agents Chemother 58:153–161. https://doi.org/10.1128/aac.01804-13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šir M, Čejková A, Masák J, Jirků V, Řezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51. https://doi.org/10.1016/j.jbiotec.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  12. Yuan Y, Sachdeva M, Leeds JA, Meredith TC (2012) Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases. J Bacteriol 194:5171–5184. https://doi.org/10.1128/jb.00792-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT (2010) Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS ONE 5:13557. https://doi.org/10.1371/journal.pone.0013557

    Article  CAS  Google Scholar 

  14. Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154. https://doi.org/10.1128/jb.00080-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dobler L, Vilela LF, Almeida RV, Neves BC (2015) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 33:123–135. https://doi.org/10.1016/j.nbt.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 1:2595–2602. https://doi.org/10.1016/S0021-9258(18)67872-X

    Article  Google Scholar 

  17. Rahim R, Burrows LL, Monteiro MA, Perry MB, Lam JS (2000) Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiol 2146:2803–2814. https://doi.org/10.1099/00221287-146-11-2803

    Article  Google Scholar 

  18. Olvera C, Goldberg JB, Sánchez R, Soberón-Chávez G (1999) The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol Lett 179:85–90. https://doi.org/10.1016/S0378-1097(99)00381-X

    Article  CAS  PubMed  Google Scholar 

  19. Zegans ME, Wozniak D, Griffin E, Toutainkidd CM, Hammond JH, Garfoot A, Lam JS (2012) Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 56:4112–4122. https://doi.org/10.1128/aac.00373-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arun SP, Asim KJ (2020) Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: improvement through co-substrate optimization. J Environ Chem Eng 8:2213–3437. https://doi.org/10.1016/j.jece.2020.104304

    Article  CAS  Google Scholar 

  21. Jagruti VJ, Padmini A, Sneha Y, Amit PP, Sandeep BK (2019) Sunflower acid oil-based production of rharmnolipid using Pseudomonas aeruginosa and its application in liquid detergents. J Surfact Deterg 22:463–476. https://doi.org/10.1002/jsde.12255

    Article  CAS  Google Scholar 

  22. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:646–653. https://doi.org/10.1093/nar/gkv1227

    Article  CAS  Google Scholar 

  23. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878. https://doi.org/10.1007/s00253-016-8041-3

    Article  CAS  PubMed  Google Scholar 

  24. Zhao F, Cui Q, Han S, Dong H, Zhang J, Ma F, Zhang Y (2015) Enhanced rhamnolipid production of Pseudomonas aeruginosa SG by increasing copy number of rhlAB genes with modified promoter. RSC Adv 5:70546–70552. https://doi.org/10.1039/C5RA13415C

    Article  CAS  Google Scholar 

  25. Tang T, Fu LH, Xie WH, Luo YZ, Zhang YT, Zhang JZ, Si T (2023) RhlA exhibits dual thioesterase and acyltransferase activities during rhamnolipid biosynthesis. ACS catal 13:5759–5766. https://doi.org/10.1021/acscatal.3c00046

    Article  CAS  Google Scholar 

  26. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795. https://doi.org/10.1016/S0021-9258(17)32089-6

    Article  CAS  PubMed  Google Scholar 

  27. Tremblay J, Richardson AP, Lépine F, Déziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 10:2622–2630. https://doi.org/10.1111/j.1462-2920.2007.01396.x

    Article  CAS  Google Scholar 

  28. Han L, Liu P, Peng Y, Lin J, Wang Q, Ma Y (2014) Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery. J Appl Microbiol 117:139–150. https://doi.org/10.1111/jam.12515

    Article  CAS  PubMed  Google Scholar 

  29. Ratridewi I, Dzulkarnain SA, Wijaya AB, Barlianto W, Santoso W, Santosaningsih D (2020) Piper betle leaf extract exhibits anti-virulence properties by downregulating rhamnolipid gene expression (rhlC) of Pseudomonas aeruginosa. Open Access Maced J Medical Sci 8:928–931. https://doi.org/10.3889/oamjms.2020.5247

    Article  Google Scholar 

  30. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x

    Article  CAS  PubMed  Google Scholar 

  31. Merced G, Hwan CM, Tian B, Ju X, Kook RJ, Ok KM, You-Hee C, Chul YS, Kaufmann GF (2013) Simultaneous inhibition of rhamnolipid and polyhydroxyalkanoic acid synthesis and biofilm formation in Pseudomonas aeruginosa by 2-bromoalkanoic acids: effect of inhibitor alkyl-chain-length. PLoS One 8:73986. https://doi.org/10.1371/journal.pone.0073986

    Article  CAS  Google Scholar 

  32. Reis RS, Pereira AG, Neves BC, Freire DM (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa–a review. Bioresour Technol 102:6377–6384. https://doi.org/10.1016/j.biortech.2011.03.074

    Article  CAS  PubMed  Google Scholar 

  33. Müller MM, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264. https://doi.org/10.1007/s00253-011-3368-2

    Article  CAS  PubMed  Google Scholar 

  34. Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33:1715–1726. https://doi.org/10.1016/j.biotechadv.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  35. Soukarieh F, Williams P, Stocks MJ, Camara M (2018) Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. J Med Chem 61:10385–10402. https://doi.org/10.1021/acs.jmedchem.8b00540

    Article  CAS  PubMed  Google Scholar 

  36. Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiol 155:712–723. https://doi.org/10.1099/mic.0.022764-0

    Article  CAS  Google Scholar 

  37. Gerardo M, Katy J, Brenda V, Gloria S (2003) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983. https://doi.org/10.1128/jb.185.20.5976-5983.2003

    Article  Google Scholar 

  38. Medina G, Juárez K, Soberón-Chávez G (2003) The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol 185:377–380. https://doi.org/10.1128/jb.185.1.377-380.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P (2016) Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLos Pathog 12:e1006029. https://doi.org/10.1371/journal.ppat.1006029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 262:1689–1699. https://doi.org/10.1111/j.1365-2958.2006.05462.x

    Article  CAS  Google Scholar 

  41. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Cámara M, Truman A, Chhabra SR, Emsley J, Williams P (2013) Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLos Pathog. 9:e1003508. https://doi.org/10.1371/journal.ppat.1003508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen JW, Lu YJ, Ye F, Zhang HF, Zhou YL, Li JT, Wu Q, Xu XW, Wu QH, Wei B, Zhang HW, Wang H (2022) A small-molecule inhibitor of the anthranilyl-CoA synthetase pqsA for the treatment of multidrug-resistant Pseudomonas aeruginosa. Microbiol Spectr 10:2721–2764. https://doi.org/10.1128/spectrum.02764-21

    Article  CAS  Google Scholar 

  43. Farrow JM, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051. https://doi.org/10.1128/jb.00753-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen Y, Vanessa J, Janine S, Ingo F, Stefan W, Erik S, Susanne HU, Wulf B (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochem 48:10298–10307. https://doi.org/10.1021/bi900123j

    Article  CAS  Google Scholar 

  45. Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Cámara M, Williams P (2010) Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol 12:1659–1673. https://doi.org/10.1111/j.1462-2920.2010.02214.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG (2010) Homeostatic interplay between bacterial cell-cell signaling and iron in virulence. Plos Pathog 6:e1000810. https://doi.org/10.1371/journal.ppat.1000810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simanek KA, Taylor IR, Richael EK, Lasek-Nesselquist E, Bassler BL, Paczkowski JE (2022) The PqsE-RhlR interaction regulates RhlR DNA binding to control virulence factor production. Microbiol Spectr 10:2108–2121. https://doi.org/10.1128/spectrum.02108-21

    Article  Google Scholar 

  48. Taylor IR, Paczkowski JE, Jeffrey PD, Henke BR, Smith CD, Bassler BL (2021) Inhibitor mimetic mutations in the PqsE enzyme reveal a protein-protein interaction with the quorum-sensing receptor RhlR that is vital for virulence factor production. ACS Chem Biol 16:740–752. https://doi.org/10.1021/acschembio.1c00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dandekar A, Greenberg E (2013) Plan B for quorum sensing. Nat Chem Biol 9:292–293. https://doi.org/10.1038/nchembio.1233

    Article  CAS  PubMed  Google Scholar 

  50. Biosurfactants: production and applications (2013) https://www.semanticscholar.org/paper/Chapter-2-Biosurfactants-%3A-Production-and-Reis-Pacheco/fe3c10992d837198ebd394e7a54742cc0c48111e. Accessed 2023

  51. Cai Z, Liu Y, Chen Y, Yam JKH, Chew SC, Chua SL, Wang K, Givskov M, Yang L (2015) RpoN regulates virulence factors of Pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. Int J Mol Sci 16:28311–28319. https://doi.org/10.3390/ijms161226103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dotsch A, Hornischer K, Bruchmann S, Duvel J, Haussler S (2015) Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. Plos Pathog 11:e1004744. https://doi.org/10.1371/journal.ppat.1004744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuster M, Hawkins AC, Harwood CS, Greenberg E (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985. https://doi.org/10.1046/j.1365-2958.2003.03886.x

    Article  CAS  PubMed  Google Scholar 

  54. Chiang SM, Schellhorn HE (2010) Evolution of the RpoS regulon: origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J Mol Evol 70:557–571. https://doi.org/10.1007/s00239-010-9352-0

    Article  CAS  PubMed  Google Scholar 

  55. Liang H, Deng X, Ji Q, Sun F, Shen T, He C (2012) The Pseudomonas aeruginosa global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression. J Bacterial 194:3098–3108. https://doi.org/10.1128/jb.06679-11

    Article  CAS  Google Scholar 

  56. Yang N, Ding S, Chen F, Zhang X, Xia Y, Di H, Cao Q, Deng X, Wu M, Wong CCL (2015) The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 96:526–547. https://doi.org/10.1111/mmi.12954

    Article  CAS  PubMed  Google Scholar 

  57. Zhang L, Gao Q, Chen W, Qin H, Heng ZW, Chen Y, Yang L, Zhang G (2013) Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiol 159:1931–1936. https://doi.org/10.1099/mic.0.066266-0

    Article  CAS  Google Scholar 

  58. Wenner N, Maes A, Cotado-Sampayo M, Lapouge K (2014) NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 16:1053–1068. https://doi.org/10.1111/1462-2920.12272

    Article  CAS  PubMed  Google Scholar 

  59. Okkotsu Y, Tieku P, Fitzsimmons LF, Churchill ME, Schurr MJ (2013) Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol 195:5499–5515. https://doi.org/10.1128/jb.00726-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H (2015) ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 43:8268–8282. https://doi.org/10.1093/nar/gkv747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 66:1557–1565. https://doi.org/10.1111/j.1365-2958.2007.06029.x

    Article  CAS  PubMed  Google Scholar 

  62. Kang H, Gan J, Zhao J, Kong W, Jing Z, Miao Z, Fan L, Song Y, Jin Q, Liang H (2016) Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Res 45:699–710. https://doi.org/10.1093/nar/gkw954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren B, Shen H, Lu ZJ, Liu H, Xu Y (2014) The phzA2-G2 transcript exhibits direct RsmA-mediated activation in Pseudomonas aeruginosa M18. PLos One 9:e89653. https://doi.org/10.1371/journal.pone.0089653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D (2004) Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945. https://doi.org/10.1128/jb.186.10.2936-2945.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. W J Micro Bio 28:2783–2790. https://doi.org/10.1007/s11274-012-1088-0

    Article  CAS  Google Scholar 

  66. Kahraman H, Erenler S (2012) Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Appl Biochem Micro 48:188–193. https://doi.org/10.1134/S000368381202007X

    Article  CAS  Google Scholar 

  67. Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2015) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J App Microbiol 118:379–389. https://doi.org/10.1111/jam.12698

    Article  CAS  Google Scholar 

  68. Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199. https://doi.org/10.1016/j.biortech.2007.05.035

    Article  CAS  PubMed  Google Scholar 

  69. Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194. https://doi.org/10.1007/s00253-006-0468-5

    Article  CAS  PubMed  Google Scholar 

  70. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853. https://doi.org/10.1002/bit.21462

    Article  CAS  PubMed  Google Scholar 

  71. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 6:3503–3506. https://doi.org/10.1128/aem.61.9.3503-3506.1995

    Article  Google Scholar 

  72. Solaiman DK, Ashby RD, Gunther NW IV, Zerkowski JA (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Environ Microbiol 99:4333–4342. https://doi.org/10.1007/s00253-015-6433-4

    Article  CAS  Google Scholar 

  73. Gong ZJ, Peng YF, Zhang YT, Song GT, Chen WJ, Jia S, Wang QH (2015) Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant. Chin J Biotechnol 31:1050–1062. https://doi.org/10.4014/jmb.1104.04048

    Article  CAS  Google Scholar 

  74. Setoodeh P, Jahanmiri A, Eslamloueyan R, Niazi A, Ayatollahi SS, Aram F, Mahmoodi M, Hortamani A (2014) Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory Pseudomonas putida KT2440. Mol Biotechnol 56:175–191. https://doi.org/10.1007/s12033-013-9693-1

    Article  CAS  PubMed  Google Scholar 

  75. Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80. https://doi.org/10.1186/1475-2859-10-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tavares LF, Silva PM, Junqueira M, Mariano D, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921. https://doi.org/10.1007/s00253-012-4454-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was supported by Natural Foundation of Zhejiang Province (LGF21H300003), Key Laboratory of Tropical Marine Ecosystem and Bioresource, MNR (2021QN03), National Natural Science Foundation of China (No. 42276137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Chen or Hong Wang.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Ethical Approval

No experiment was conducted on animals. Since, the current work is entirely based upon the previous data and sample, this study does not warrant any ethical approval certificate.

Consent to Participate

Not applicable for this work.

Consent to Publish

Not applicable for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yu, X., Lu, X. et al. Biosynthesis and Gene Regulation of Rhamnolipid Congeners. Curr Microbiol 80, 302 (2023). https://doi.org/10.1007/s00284-023-03405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03405-x

Navigation