Skip to main content
Log in

Carbendazim Modulates the Metabolically Active Bacterial Populations in Soil and Rhizosphere

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The impact of fungicide residues on non-target soil bacterial communities is relatively unexplained. We hypothesize that the persistence of fungicide residues in the soil will affect the soil bacterial populations. Persistence depends on biotic and abiotic factors, primarily determined by agricultural activities. Activities such as fallow soil (F), farmyard manure (FYM) amendment, rice straw (RS) mulching, and cultivation of maize (Zea mays) and clover (Trifolium alexandrinum) were used as treatments. The soil CO2 efflux showed no effect of Carbendazim on dormant bacteria (unwatered condition). However, in irrigated condition, Carbendazim enhanced the CO2 efflux by 8, 164, 131, 249, and 182% in fallow, FYM, RS, maize, and Trifolium treatments, respectively. However, 16S rRNA metagenome study after 30 days of carbendazim treatment showed that maize rhizosphere microflora was most susceptible, decreasing the Shannon diversity index from 0.321 to 0.165. Diversity indices generally increased in maize and RS treatments, and Proteobacteria was the most prominent bacterial phyla in the maize rhizosphere. The microbial communities separated into distinct groups on the Principal Co-ordinate analysis (PCoA) plot. The separation on scale 1 (35%) and scale 2 (13%) was based, respectively, on microbial activity and carbendazim treatments. Functionally Maize+Carbendazim treatment showed the highest enzyme activities dehydrogenase (82.25%), acid phosphatase (78.10%), alkaline phosphatase (48.26%), β-glucosidase (59.99%), protease (126.65%), and urease (50.66%) compared to fallow soil. Overall, Carbendazim enhanced non-target bacterial activity in metabolically active niches, while it did not affect the dormant microflora. Thus, organic amendments and cultivation of fungicide-contaminated soil may help render the contaminant through bacterial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The generated datasets during the present study are available in the NCBI database (https://www.ncbi.nlm.nih.gov/sra/PRJNA846527) under the BioProject number PRJNA846527 for Fallow Carbendazim (SRX15620366), Fallow Control (SRX15620367), FYM Control (SRX15620365), FYM Carbendazim (SRX15620364), RS Carbendazim (SRX15620362), RS Control (SRX15620363), Maize Carbendazim (SRX15620361), Maize Control (SRX15620360), Berseem Control (TriCont) (SRX17824939) and Berseem Carbendazim (TriCarb) (SRX17824938) samples.

Code Availability

Not applicable.

References

  1. Gupta A, Bano A, Rai S, Dubey P, Khan F, Pathak N et al (2021) Plant growth promoting rhizobacteria (PGPR): a sustainable agriculture to rescue the vegetation from the effect of biotic stress: a review. Lett Appl Nano BioSci 10(3):2459–2465. https://doi.org/10.33263/LIANBS103.24592465

    Article  Google Scholar 

  2. Kumar G, Lal S, Soni SK, Maurya SK, Shukla PK, Chaudhary P, Bhattacherjee AK, Garg N (2022) Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Front Microbiol 13:891870. https://doi.org/10.3389/fmicb.2022.891870

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A et al (2019) Fungicides: an overlooked pesticide class? Environ Sci Technol 53(7):3347-3365.s. https://doi.org/10.1021/acs.est.8b04392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Environmental Health Criteria 149 Carbendazim; Geneva, International Programme on Chemical Safety, 132 pp. 1993

  5. Kumar A, Sharma A, Chaudhary P, Gangola S (2021) Chlorpyrifos degradation using binary fungal strains isolated from industrial waste soil. Biologia 76(10):3071–3080. https://doi.org/10.1007/s11756-021-00816-8

    Article  CAS  Google Scholar 

  6. Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S et al (2021) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827. https://doi.org/10.1016/j.chemosphere.2020.128827

    Article  CAS  PubMed  Google Scholar 

  7. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14(3):317–329. https://doi.org/10.1007/s10311-016-0566-2

    Article  CAS  Google Scholar 

  8. Lin X, Hou Z, Zhao SF, Xie L, LiMZ HJL (2011) A high efficient carbendazim-degrading bacterial strain: its isolation and identification. Chin J Ecol 7:031

    Google Scholar 

  9. Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X (2013) Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environ Sci Pollut Res 20(1):380–389. https://doi.org/10.1007/s11356-012-0902-4

    Article  CAS  Google Scholar 

  10. Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD, Hingmire SA (2014) Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Environ Monit Assess 186(12):8599–8610. https://doi.org/10.1007/s10661-014-4027-8

    Article  CAS  PubMed  Google Scholar 

  11. Bonilla N, Cazorla FM, Martínez-Alonso M, Hermoso JM, González-Fernández JJ, Gaju N et al (2012) Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant Soil 357:215–226. https://doi.org/10.1007/s11104-012-1155-1

    Article  CAS  Google Scholar 

  12. Marín-Benito JM, Herrero-Hernández E, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS (2014) Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci Total Environ 476–477:611–621. https://doi.org/10.1016/j.scitotenv.2014.01.052

    Article  CAS  PubMed  Google Scholar 

  13. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Micro-biol Ecol 68(1):1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  Google Scholar 

  14. Chauhan PS, Chaudhry V, Sandhya M, Nautiyal CS (2011) Uncultured bacterial diversity in tropical maize (Zea mays L) rhizosphere. J Basic Microbiol 51(1):15–32. https://doi.org/10.1002/jobm.201000171

    Article  CAS  PubMed  Google Scholar 

  15. Wei Y-j, Wu Y, Yan Y-z, Zou W, Xue J, Ma W-r et al (2018) High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS One 13(3):e0193097. https://doi.org/10.1371/journal.pone.0193097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matheus R, Kantur D, Bora N (2018) Innovation of the fallow system with the legume cover crop a season for improved physical properties of soil degraded on dryland farming. IJSTR 7, 107–111. http://www.ijstr.org

  17. Wang Z, Wang Y, Gong F, Zhang J, Hong Q, Li S (2010) Biodegradation of carbendazim by a novel Actinobacterium Rhodococcusjialingiae djl-6-2. Chemosphere 81(5):639–644. https://doi.org/10.1016/j.chemosphere.2010.08.040

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442. https://doi.org/10.1016/j.scitotenv.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  19. Alef K (1995) Dehydrogenase activity. In: Alef K, Nannipieri P (eds) Methods in Applied Soil Microbiology and Biochemistry. Academic Press, San Diego, pp 228–231

    Google Scholar 

  20. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol and Biochem 1(4):301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  21. Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Sci Soc Am J 41:350–352

    Google Scholar 

  22. Andrews S (2010) FASTQC. A quality control tool for high throughput sequence data

  23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfo 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeSantis TZ, Philip H, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbial 72(7):5069–5072. https://doi.org/10.1128/aem.03006-05

    Article  CAS  Google Scholar 

  26. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9(6):403–413. https://doi.org/10.1038/nrmicro2578

    Article  CAS  PubMed  Google Scholar 

  27. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  Google Scholar 

  28. Langille MGI, Zaneveld J, Caporaso G, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romeh AAA (2022) Remedial potential of plant growth promoting rhizobacteria (PGPR) for pesticide residues: Recent trends and future challenges. In: Siddiqui S, Meghvansi MK, Chaudhary KK (eds) Pesticides Bioremediation. Springer, Cham

    Google Scholar 

  30. Chaudhary V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64:450–460. https://doi.org/10.1007/s00248-012-0025-y

    Article  Google Scholar 

  31. Engelhardt IC, Welty A, Blazewicz SJ, Bru D, Rouard N, Breuil MC et al (2018) Depth matters: effects of precipitation regime on soil microbial activity upon rewetting of a plant-soil system. The ISME J 12(4):1061–1071. https://doi.org/10.1038/s41396-018-0079-z

    Article  CAS  PubMed  Google Scholar 

  32. Ludwig MI, Wilmes P, Schrader S (2018) Measuring soil sustainability via soil resilience. Sci Total Environ 626:1484–1493. https://doi.org/10.1016/j.scitotenv.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  33. Bore KE, Apostel C, Halicki S, Kuzyakov Y, Dippold MA (2017) Soil microorganisms can overcome respiration inhibition by coupling intra- and extracellular metabolism: 13C metabolic tracing reveals the mechanisms. The ISME J 11(6):1423–1433. https://doi.org/10.1038/ismej.2017.3

    Article  CAS  Google Scholar 

  34. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x

    Article  CAS  PubMed  Google Scholar 

  35. Lamichhane JR, You M, Laudinot V, Barbetti MJ, Aubertot JN (2020) Revisiting sustainability of fungicide seed treatments for field crops. Plant Dis 104:610–623. https://doi.org/10.1094/PDIS-06-19-1157-FE

    Article  CAS  PubMed  Google Scholar 

  36. Borase DN, Nath CP, Hazra KK, Senthilkumar M, Singh SS, Praharaj CS et al (2020) Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecol Indica 114:106322. https://doi.org/10.1016/j.ecolind.2020.106322

    Article  CAS  Google Scholar 

  37. Sun W, Xiao E, Haggblom MM, Krumins V, Dong Y, Sun X et al (2018) Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environ Sci Technol 52:13370–13380. https://doi.org/10.1021/acs.est.8b03853

    Article  CAS  PubMed  Google Scholar 

  38. Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993. https://doi.org/10.1007/s00203-016-1260-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burns KN, Bokulich NA, Cantu D, Greenhut RF, Kluepfel DA, O’Geen AT, Strauss SL, Steenwerth KL (2016) Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol Biochem 103:337–348. https://doi.org/10.1016/j.soilbio.2016.09.007

    Article  CAS  Google Scholar 

  40. Ling N, Chen D, Guo H, Wei J, Bai Y, Shen Q, Hu S (2017) Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. Geoderma 292:25–33. https://doi.org/10.1016/j.geoderma.2017.01.013

    Article  CAS  Google Scholar 

  41. Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019) Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol Biochem 136:107521. https://doi.org/10.1016/j.soilbio.2019.107521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  43. Timonen S, Sinkko H, Sun H, Sietio OM, Rinta-kanto JM, Kiheri H et al (2017) Ericoid roots and mycospheres govern plant-specific bacterial communities in boreal forest humus. Microb Ecol 73(4):939–953. https://doi.org/10.1007/s00248-016-0922-6

    Article  PubMed  Google Scholar 

  44. Garcia-Ruiz R, Ochoa V, Hinojosa MB, Carreira JA (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Boil Biochem 40(9):2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023

    Article  CAS  Google Scholar 

  45. Rodriguez MT, Valverde NB, Lagurara P, de Souza JA, Vilaro MD, Revale S (2017) Soil and rhizosphere bacterial diversity in maize agro-ecosystem. Sustain Agric Res 6(3):35. https://doi.org/10.5539/sar.v6n3p35

    Article  Google Scholar 

  46. Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y et al (2020) Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob Chang Biol 26:669–681. https://doi.org/10.1111/gcb.14777

    Article  PubMed  Google Scholar 

  47. Zhang GS, Jia XM, Cheng TF et al (2005) Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain. World J Microbiol Biotechnol 21:265–269. https://doi.org/10.1007/s11274-004-3628-8

    Article  CAS  Google Scholar 

  48. Kuo-Hsiang Tang, Yinjie Tang, Blankenship R (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:1664–302X. https://doi.org/10.3389/fmicb.2011.00165

    Article  CAS  Google Scholar 

  49. Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R (2017) Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 109:374–382. https://doi.org/10.1016/j.ygeno.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  50. Sierra-Garcia IN, Correa Alvarez J, de Pantaroto Vasconcellos S, Pereira de Souza A, dos Santos Neto EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from brazilian petroleum reservoirs. PLoS One 9(2):e90087. https://doi.org/10.1371/journal.pone.0090087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Director, CSIR-National Botanical Research Institute, Lucknow, India for providing all the necessary facilities. SK and UY acknowledge AcSIR and fellowship grant from UGC-CSIR. This research was supported by in-house OLP project funded by CSIR, New Delhi. We thank the ethical committee, CSIR-NBRI, for evaluating the manuscript and providing MS No. CSIR-NBRI_MS/2023/02/04. Furthermore, we also thank Integral University for providing MCN no. IU/R&D/2023-MCN0001916.

Funding

SK and UY acknowledge AcSIR and a fellowship grant from UGC-CSIR. This research was supported by in-house OLP project OLP funded by CSIR, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study: Conceptualization: PCS and SC; Methodology: NB, TF, SK, and AG; Writing of the original draft & preparation: SC, UY, and PCS; Writing, reviewing, and editing of the manuscript: PCS, AD, and UY; Funding acquisition, Resources, and Supervision: PCS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Poonam C. Singh.

Ethics declarations

Conflicts of interest

There is no conflict of interest among the authors.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1300 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Yadav, U., Bano, N. et al. Carbendazim Modulates the Metabolically Active Bacterial Populations in Soil and Rhizosphere. Curr Microbiol 80, 280 (2023). https://doi.org/10.1007/s00284-023-03391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03391-0

Navigation