Skip to main content
Log in

Alkalihalobacillus deserti sp. nov., Isolated from the Saline–Alkaline Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A bacterial strain, designated TRPH29T, was isolated from saline-alkaline soil, collected from the southern edge of the Gurbantunggut desert, Xinjiang, People’s Republic of China. The isolate was Gram-staining positive, facultatively anaerobic, straight rods. Growth occurred at 15–40 °C (optimum, 28 °C), pH 8.0–13.0 (optimum, 10.0), and in the presence of 0–15% (w/v) NaCl (optimum, 2%). Phylogenetic analysis using 16S rRNA gene sequence indicated that strain TRPH29T showed the highest sequence similarities to Alkalihalobacillus krulwichiae (98.31%), Alkalihalobacillus wakoensis (98.04%), and Alkalihalobacillus akibai (97.69%). Average nucleotide identity (ANI) and digital DNA-DNA hybridization values between strain TRPH29T and Alkalihalobacillus krulwichiae, Alkalihalobacillus wakoensis, Alkalihalobacillus akibai were in the range of 73.62–75.52% and 15.0–21.20%, respectively. Results of genome analyses indicated that the genome size of strain TRPH29T was 5.05 Mb, with a genomic DNA G + C content of 37.30%. Analysis of the cellular component of strain TRPH29T revealed that the primary fatty acids were anteiso-C15:0 and iso-C15:0, and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid, and an unidentified phospholipid. The predominant respiratory quinone was MK-7. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain TRPH29T represents a novel species of the genus Alkalihalobacillus, for which the name Alkalihalobacillus deserti sp. nov. is proposed. The type strain is TRPH29T (= CGMCC 1.19067T = NBRC 115475T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANI:

Average nucleotide identity

dDDH:

Digital DNA–DNA hybridization

ML:

Maximum-likelihood

NJ:

Neighbor-joining

GTDB-Tk:

Genome taxonomy database‐toolkit

References

  1. Cohn F (1872) Untersuchungen über Bakterien. Beitr Biol Pflanz 1:127–224

    Google Scholar 

  2. Joshi A, Thite S, Karodi P, Joseph N, Lodha T (2021) Alkalihalobacterium elongatum gen. nov. sp. nov.: an antibiotic-producing bacterium isolated from Lonar Lake and reclassification of the genus Alkalihalobacillus into seven novel genera. Front Microbiol 12:722369. https://doi.org/10.3389/fmicb.2021.722369

    Article  PubMed  PubMed Central  Google Scholar 

  3. Patel S, Gupta RS (2020) A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 70:406–438. https://doi.org/10.1099/ijsem.0.003775

    Article  CAS  PubMed  Google Scholar 

  4. Priest FG, Goodfellow MO, Todd C (1988) A numerical classification of the genus Bacillus. Microbiology 134(7):1847–1882. https://doi.org/10.1099/00221287-134-7-1847

    Article  CAS  Google Scholar 

  5. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17(1):86–98. https://doi.org/10.1016/S0723-2020(11)80035-4

    Article  Google Scholar 

  6. Shin B, Park C, Lee BH, Lee KE, Park W (2020) Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus. Int J Syst Evol Microbiol 70:1843–1849. https://doi.org/10.1099/ijsem.0.003982

    Article  CAS  PubMed  Google Scholar 

  7. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol R 63(4):735. https://doi.org/10.1128/MMBR.63.4.735-750.1999

    Article  CAS  Google Scholar 

  8. Sarethy IP et al (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38(7):769–790. https://doi.org/10.1007/s10295-011-0968-x

    Article  CAS  PubMed  Google Scholar 

  9. Lee GH, Rhee MS, Chang DH, Kwon KK, Bae KS (2014) Bacillus solimangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 64(Pt 5):1622–1628. https://doi.org/10.1099/ijs.0.058230-0

    Article  CAS  PubMed  Google Scholar 

  10. Li X et al (2018) Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.). Int J Syst Evol Microbiol 68:2325–2330. https://doi.org/10.1099/ijsem.0.002840

    Article  CAS  PubMed  Google Scholar 

  11. Yoon SH et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  13. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  14. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.0000/PMID3447015

    Article  CAS  PubMed  Google Scholar 

  15. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  16. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

    Article  Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  19. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lagesen K et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aziz RK et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2015) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32(6):929–931. https://doi.org/10.1093/bioinformatics/btv681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9(3):111–118. https://doi.org/10.1128/microbe.9.111.1

    Article  Google Scholar 

  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinfo 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  27. Jiao JY et al (2022) Comparative genomic analysis of Thermus provides insights into the evolutionary history of an incomplete denitrification pathway. mLife 1(2):12. https://doi.org/10.1002/mlf2.12009

    Article  CAS  Google Scholar 

  28. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, pp 607–654

    Google Scholar 

  29. Kämpfer P et al (2017) Psychromonas aquatilis sp. nov. isolated from seawater samples obtained in the Chilean Antarctica. Int J Syst Evol Microbiol 67:1306–1311. https://doi.org/10.1099/ijsem.0.001801

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24(6):710–715. https://doi.org/10.1139/m78-119

    Article  CAS  PubMed  Google Scholar 

  31. Yumoto I et al (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536. https://doi.org/10.1099/ijs.0.02596-0

    Article  CAS  PubMed  Google Scholar 

  32. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704. https://doi.org/10.1038/178703a0

    Article  CAS  PubMed  Google Scholar 

  33. Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5(12):2359–2367. https://doi.org/10.1080/01483918208067640

    Article  CAS  Google Scholar 

  34. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29(4):319–322. https://doi.org/10.2323/jgam.29.319

    Article  CAS  Google Scholar 

  35. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443. https://doi.org/10.1099/00207713-20-4-435

    Article  CAS  Google Scholar 

  36. Minnikin DE et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  37. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470. https://doi.org/10.1111/j.1365-2672.1980.tb01036.x

    Article  CAS  Google Scholar 

  38. Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305. https://doi.org/10.1146/annurev.mi.46.100192.001425

    Article  CAS  PubMed  Google Scholar 

  39. Borsodi AK et al (2011) Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. IJSEM 61(8):1880–1886. https://doi.org/10.1099/ijs.0.019489-0

    Article  CAS  PubMed  Google Scholar 

  40. Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55(Pt 6):2309–2315. https://doi.org/10.1099/ijs.0.63649-0

    Article  CAS  PubMed  Google Scholar 

  41. Rundlöf AK, Arnér ESJ (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Sign 6(1):41–52. https://doi.org/10.1089/152308604771978336

    Article  CAS  Google Scholar 

  42. Gibson DT, Yeh WK (1984) Microbial degradation of aromatic hydrocarbons. Microb Degrad Org Compd. https://doi.org/10.1002/jobm.19650050409

    Article  Google Scholar 

  43. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res. https://doi.org/10.1016/j.micres.2013.02.002

    Article  PubMed  Google Scholar 

  44. Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35(9):1407–1414. https://doi.org/10.1080/00021369.1971.10860094

    Article  CAS  Google Scholar 

  45. Ito S et al (1989) Alkaline cellulase for laundry detergents-production by Bacillus sp. KSM-635 and enzymatic-properties. Agric Biol Chem 53(5):1275–1281. https://doi.org/10.1080/00021369.1989.10869489

    Article  CAS  Google Scholar 

  46. Loiseau C et al (2015) Surfactin from Bacillus subtilis displays an unexpected anti-legionella activity. Appl Microbiol Biotechnol 99(12):5083–5093. https://doi.org/10.1007/s00253-014-6317-z

    Article  CAS  PubMed  Google Scholar 

  47. Qi G et al (2010) Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 31(11):1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  48. Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21(6):705–720. https://doi.org/10.1080/09583157.2011.574208

    Article  Google Scholar 

  49. Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63(2):215–222. https://doi.org/10.4149/206_150518N270

    Article  CAS  PubMed  Google Scholar 

  50. Tran PN et al (2015) Whole-Genome sequence and classification of 11 endophytic bacteria from poison ivy (Toxicodendron radicans). Genome Announc. https://doi.org/10.1128/genomeA.01319-15

    Article  PubMed  PubMed Central  Google Scholar 

  51. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207. https://doi.org/10.1016/S0580-9517(08)70410-0

    Article  CAS  Google Scholar 

  52. Liu B et al (2019) Bacillus urbisdiaboli sp. nov., isolated from soil sampled in Xinjiang. Int J Syst Evol Microbiol 69(6):1591–1596. https://doi.org/10.1099/ijsem.0.003363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Yan Zhang (School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China) for kindly providing the reference type strains. We also thank Prof. Aharon Oren from Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem for his kindly help with nomenclature of the new taxa.

Funding

This work was supported by National Natural Science Foundation of China (Nos. 31570109 and 32061143043), Scientific projects of colleges and universities in Xinjiang Autonomous Region (XJEDU2018I016) and the open subject of the Key Laboratory of the Autonomous Region (02017D0408). Wen-Jun Li was also supported by the Third Xinjiang Scientific Expedition Program (Grant No. 2022xjkk1204).

Author information

Authors and Affiliations

Authors

Contributions

DDA and WJL designed the work. ZR, MA and DA carry out the morphological, biochemical, physiological and molecular characterisation of novel strain and maintained the bacterial cultures. YQL and LL carried out the genomic data retrieval from databases, phylogenomic, phylogenetic data analysis. ZR, YQL, DHMA and WNHJ carried out the article examination. All authors contributed to writing the manuscript and accepted it for publication.

Corresponding authors

Correspondence to Deng-Di An or Wen-Jun Li.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2613 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouzi, Z., Li, YQ., Aosiman, M. et al. Alkalihalobacillus deserti sp. nov., Isolated from the Saline–Alkaline Soil. Curr Microbiol 80, 261 (2023). https://doi.org/10.1007/s00284-023-03353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03353-6

Navigation