Skip to main content

Advertisement

Log in

The Role of Adhesion in Helicobacter pylori Persistent Colonization

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Helicobacter pylori (H. pylori) has coevolved with its human host for more than 100 000 years. It can safely colonize around the epithelium of gastric glands via their specific microstructures and proteins. Unless patients receive eradication treatment, H. pylori infection is always lifelong. However, few studies have discussed the reasons. This review will focus on the adhesion of H. pylori from the oral cavity to gastric mucosa and summarize the possible binding and translocation characteristics. Adhesion is the first step for persistent colonization after the directional motility, and factors related to adhesion are necessary. Outer membrane proteins, such as the blood group antigen binding adhesin (BabA) and the sialic acid binding adhesin (SabA), play pivotal roles in binding to human mucins and cellular surfaces. And this may offer different perspectives on eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

(BabA):

Blood group antigen binding adhesin

(CAG):

Chronic atrophic gastritis

(GIT):

Gastrointestinal tract

(GSCs):

Gastric stem cells

(IFNs):

Interferons

(IM):

Intestinal metaplasia

(ILs):

Interleukins

(LP):

Lamina propria

(MNCs):

Mucous neck cells

(MM):

Muscularis mucosa

(NAG):

Non-atrophic gastritis

(NF-κB):

Nuclear factor-κB

(PCs):

Parietal cells

(SabA):

Salic acid binding adhesin

(sLe):

Sialyl-Lewis

(SPEM):

Spasmolytic polypeptide-expressing metaplasia

(SM):

Submucosa

(SMCs):

Surface mucous cells

(TNF):

Tumour necrosis factor

(ZCs):

Zymogenic cells

References

  1. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490. https://doi.org/10.1128/cmr.00054-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang H, Hu B (2022) Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022:2944156. https://doi.org/10.1155/2022/2944156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang-Ou YB, Hu Y, Zhu Y, Lu NH (2018) The effect of antioxidants on Helicobacter pylori eradication: a systematic review with meta-analysis. Helicobacter. https://doi.org/10.1111/hel.12535

    Article  PubMed  Google Scholar 

  4. Ansari S, Yamaoka Y (2017) Survival of Helicobacter pylori in gastric acidic territory. Helicobacter. https://doi.org/10.1111/hel.12386

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH (2001) Supramolecular assembly and acid resistance of helicobacter pylori urease. Nat Struct Biol 8:505–509. https://doi.org/10.1038/88563

    Article  CAS  PubMed  Google Scholar 

  6. van Vliet AH, Ernst FD, Kusters JG (2004) NikR-mediated regulation of helicobacter pylori acid adaptation. Trends Microbiol 12:489–494. https://doi.org/10.1016/j.tim.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  7. Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261. https://doi.org/10.1016/s0168-6445(03)00042-1

    Article  CAS  PubMed  Google Scholar 

  8. Fiori-Duarte AT, Rodrigues RP, Kitagawa RR, Kawano DF (2020) Insights into the design of inhibitors of the urease enzyme—a major target for the treatment of helicobacter pylori infections. Curr Med Chem 27:3967–3982. https://doi.org/10.2174/0929867326666190301143549

    Article  CAS  PubMed  Google Scholar 

  9. Zhou JT, Li CL, Tan LH, Xu YF, Liu YH, Mo ZZ, Dou YX, Su R, Su ZR, Huang P et al (2017) Inhibition of helicobacter pylori and its associated urease by palmatine: investigation on the potential mechanism. PLoS ONE. https://doi.org/10.1371/journal.pone.0168944

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang X, He Y, Xiong Z, Li M, Li M, Zheng N, Zhao S, Wang J (2021) Chelerythrine chloride: a potential rumen microbial urease inhibitor screened by targeting UreG. Int J Mol Sci. https://doi.org/10.3390/ijms22158212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M (2019) Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. J Cell Physiol 234:21460–21470. https://doi.org/10.1002/jcp.28870

    Article  CAS  PubMed  Google Scholar 

  12. Yang H, Hu B (2022) Letter: the hidden reasons of long-term risk of upper gastrointestinal bleeding after helicobacter pylori eradication. Aliment Pharmacol Ther 55:372–373. https://doi.org/10.1111/apt.16736

    Article  PubMed  Google Scholar 

  13. Khalifa MM, Sharaf RR, Aziz RK (2010) Helicobacter pylori: a poor man’s gut pathogen? Gut pathogens 2:2. https://doi.org/10.1186/1757-4749-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kivi M, Tindberg Y, Sörberg M, Casswall TH, Befrits R, Hellström PM, Bengtsson C, Engstrand L, Granström M (2003) Concordance of Helicobacter pylori strains within families. J Clin Microbiol 41:5604–5608. https://doi.org/10.1128/jcm.41.12.5604-5608.2003

    Article  PubMed  PubMed Central  Google Scholar 

  15. López-Valverde N, Macedo de Sousa B, López-Valverde A, Suárez A, Rodríguez C, Aragoneses JM (2022) Possible association of periodontal diseases with helicobacter pylori gastric infection: a systematic review and meta-analysis. Front Med. https://doi.org/10.3389/fmed.2022.822194

    Article  Google Scholar 

  16. Kadota T, Hamada M, Nomura R, Ogaya Y, Okawa R, Uzawa N, Nakano K (2020) Distribution of helicobacter pylori and periodontopathic bacterial species in the oral cavity. Biomedicines. https://doi.org/10.3390/biomedicines8060161

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sekar R, Murali P, Junaid M (2022) Quantification of helicobacter pylori and its oncoproteins in the oral cavity: a cross-sectional study. Oral Dis. https://doi.org/10.1111/odi.14141

    Article  PubMed  Google Scholar 

  18. Irani S, Monsef Esfahani A, Bidari Zerehpoush F (2013) Detection of helicobacter pylori in oral lesions. J D Res D Clin D Prospect 7:230–237. https://doi.org/10.5681/joddd.2013.037

    Article  Google Scholar 

  19. Nagata R, Ohsumi T, Takenaka S, Noiri Y (2020) Current prevalence of oral helicobacter pylori among japanese adults determined using a nested polymerase chain reaction assay. Pathogens. https://doi.org/10.3390/pathogens10010010

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Li R, Xue X, Xu T, Luo Y, Dong Q, Liu J, Liu J, Pan Y, Zhang D (2020) Periodontal disease and Helicobacter pylori infection in oral cavity: a meta-analysis of 2727 participants mainly based on Asian studies. Clin Oral Invest 24:2175–2188. https://doi.org/10.1007/s00784-020-03330-4

    Article  Google Scholar 

  21. Kazanowska-Dygdała M, Duś I, Radwan-Oczko M (2016) The presence of Helicobacter pylori in oral cavities of patients with leukoplakia and oral lichen planus. J Appl Oral Sci Revista FOB 24:18–23. https://doi.org/10.1590/1678-775720150203

    Article  CAS  PubMed  Google Scholar 

  22. Cześnikiewicz-Guzik M, Karczewska E, Bielański W, Guzik TJ, Kapera P, Targosz A, Konturek SJ, Loster B (2004) Association of the presence of Helicobacter pylori in the oral cavity and in the stomach. J Physiol Pharmacol Off J Polish Physiol Soc 55(Suppl 2):105–115

    Google Scholar 

  23. Andersen RN, Ganeshkumar N, Kolenbrander PE (1998) Helicobacter pylori adheres selectively to Fusobacterium spp. Oral Microbiol Immunol 13:51–54. https://doi.org/10.1111/j.1399-302x.1998.tb00751.x

    Article  CAS  PubMed  Google Scholar 

  24. Ishihara K, Miura T, Kimizuka R, Ebihara Y, Mizuno Y, Okuda K (1997) Oral bacteria inhibit Helicobacter pylori growth. FEMS Microbiol Lett 152:355–361. https://doi.org/10.1111/j.1574-6968.1997.tb10452.x

    Article  CAS  PubMed  Google Scholar 

  25. Umeda M, Kobayashi H, Takeuchi Y, Hayashi J, Morotome-Hayashi Y, Yano K, Aoki A, Ohkusa T, Ishikawa I (2003) High prevalence of Helicobacter pylori detected by PCR in the oral cavities of periodontitis patients. J Periodontol 74:129–134. https://doi.org/10.1902/jop.2003.74.1.129

    Article  PubMed  Google Scholar 

  26. Dye BA, Kruszon-Moran D, McQuillan G (2002) The relationship between periodontal disease attributes and Helicobacter pylori infection among adults in the United States. Am J Public Health 92:1809–1815. https://doi.org/10.2105/ajph.92.11.1809

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hirsch C, Tegtmeyer N, Rohde M, Rowland M, Oyarzabal OA, Backert S (2012) Live Helicobacter pylori in the root canal of endodontic-infected deciduous teeth. J Gastroenterol 47:936–940. https://doi.org/10.1007/s00535-012-0618-8

    Article  PubMed  Google Scholar 

  28. Krzyżek P, Gościniak G (2018) Oral Helicobacter pylori: Interactions with host and microbial flora of the oral cavity. D Med Probl 55:75–82. https://doi.org/10.17219/dmp/81259

    Article  Google Scholar 

  29. Wickström C, Christersson C, Davies JR, Carlstedt I (2000) Macromolecular organization of saliva: identification of ‘insoluble’ MUC5B assemblies and non-mucin proteins in the gel phase. Biochem J 351(Pt 2):421–428

    Article  PubMed  PubMed Central  Google Scholar 

  30. Frenkel ES, Ribbeck K (2015) Salivary mucins in host defense and disease prevention. J Oral Microbiol 7:29759. https://doi.org/10.3402/jom.v7.29759

    Article  CAS  PubMed  Google Scholar 

  31. Oleastro M, Ménard A (2013) The role of helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology 2:1110–1134. https://doi.org/10.3390/biology2031110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walz A, Odenbreit S, Mahdavi J, Borén T, Ruhl S (2005) Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 15:700–708. https://doi.org/10.1093/glycob/cwi049

    Article  CAS  PubMed  Google Scholar 

  33. Walz A, Odenbreit S, Stühler K, Wattenberg A, Meyer HE, Mahdavi J, Borén T, Ruhl S (2009) Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 9:1582–1592. https://doi.org/10.1002/pmic.200700808

    Article  CAS  PubMed  Google Scholar 

  34. Thomsson KA, Schulz BL, Packer NH, Karlsson NG (2005) MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15:791–804. https://doi.org/10.1093/glycob/cwi059

    Article  CAS  PubMed  Google Scholar 

  35. Yee JKC (2017) Are the view of Helicobacter pylori colonized in the oral cavity an illusion? Expe Mol Med. https://doi.org/10.1038/emm.2017.225

    Article  Google Scholar 

  36. Navabi N, Aramon M, Mirzazadeh A (2011) Does the presence of the Helicobacter pylori in the dental plaque associate with its gastric infection? a meta-analysis and systematic review. D Res J 8:178–182. https://doi.org/10.4103/1735-3327.86033

    Article  Google Scholar 

  37. Silva DG, Stevens RH, Macedo JM, Hirata R, Pinto AC, Alves LM, Veerman EC, Tinoco EM (2009) Higher levels of salivary MUC5B and MUC7 in individuals with gastric diseases who harbor Helicobacter pylori. Arch Oral Biol 54:86–90. https://doi.org/10.1016/j.archoralbio.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Song Y, Wang X, Gao X, Li S, Yee JKA (2018) Clinical trial on oral h. pylori infection of preschool children. Annals Clin Lab Sci 48:751–756

    CAS  Google Scholar 

  39. Liu Y, Lin H, Bai Y, Qin X, Zheng X, Sun Y, Zhang Y (2008) Study on the relationship between Helicobacter pylori in the dental plaque and the occurrence of dental caries or oral hygiene index. Helicobacter 13:256–260. https://doi.org/10.1111/j.1523-5378.2008.00602.x

    Article  CAS  PubMed  Google Scholar 

  40. Sheu BS, Cheng HC, Yang YJ, Yang HB, Wu JJ (2007) The presence of dental disease can be a risk factor for recurrent Helicobacter pylori infection after eradication therapy: a 3-year follow-up. Endoscopy 39:942–947. https://doi.org/10.1055/s-2007-966787

    Article  PubMed  Google Scholar 

  41. Miyabayashi H, Furihata K, Shimizu T, Ueno I, Akamatsu T (2000) Influence of oral Helicobacter pylori on the success of eradication therapy against gastric Helicobacter pylori. Helicobacter 5:30–37. https://doi.org/10.1046/j.1523-5378.2000.00004.x

    Article  CAS  PubMed  Google Scholar 

  42. Ren Q, Yan X, Zhou Y, Li WX (2016) Periodontal therapy as adjunctive treatment for gastric Helicobacter pylori infection. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009477.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ozturk A (2021) Periodontal treatment is associated with improvement in gastric helicobacter pylori eradication: an updated meta-analysis of clinical trials. Int Dent J 71:188–196. https://doi.org/10.1111/idj.12616

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kashyap D, Baral B, Verma TP, Sonkar C, Chatterji D, Jain AK, Jha HC (2020) Oral rinses in growth inhibition and treatment of Helicobacter pylori infection. BMC Microbiol 20:45. https://doi.org/10.1186/s12866-020-01728-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang XM, Yee KC, Hazeki-Taylor N, Li J, Fu HY, Huang ML, Zhang GY (2014) Oral Helicobacter pylori, its relationship to successful eradication of gastric H. pylori and saliva culture confirmation. J Physiol Pharmacol Off J Polish Physiol Soc 65:559–566

    CAS  Google Scholar 

  46. Schreiber S, Bücker R, Groll C, Azevedo-Vethacke M, Garten D, Scheid P, Friedrich S, Gatermann S, Josenhans C, Suerbaum S (2005) Rapid loss of motility of Helicobacter pylori in the gastric lumen in vivo. Infect Immun 73:1584–1589. https://doi.org/10.1128/iai.73.3.1584-1589.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, Ewoldt RH, McKinley GH, So P, Erramilli S et al (2009) Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci USA 106:14321–14326. https://doi.org/10.1073/pnas.0903438106

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bansil R, Celli JP, Hardcastle JM, Turner BS (2013) The Influence of Mucus Microstructure and Rheology in Helicobacter pylori Infection. Front Immunol 4:310. https://doi.org/10.3389/fimmu.2013.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lertsethtakarn P, Ottemann KM, Hendrixson DR (2011) Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 65:389–410. https://doi.org/10.1146/annurev-micro-090110-102908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, Vollmer W, Salama NR (2012) Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog 8:e1002603. https://doi.org/10.1371/journal.ppat.1002603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schoenhofen IC, Lunin VV, Julien JP, Li Y, Ajamian E, Matte A, Cygler M, Brisson JR, Aubry A, Logan SM et al (2006) Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J Biol Chem 281:8907–8916. https://doi.org/10.1074/jbc.M512987200

    Article  CAS  PubMed  Google Scholar 

  52. Gu H (2017) Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 74:863–869. https://doi.org/10.1007/s00284-017-1256-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunne C, Dolan B, Clyne M (2014) Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol 20:5610–5624. https://doi.org/10.3748/wjg.v20.i19.5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian W, Jia Y, Yuan K, Huang L, Nadolny C, Dong X, Ren X, Liu J (2014) Serum antibody against Helicobacter pylori FlaA and risk of gastric cancer. Helicobacter 19:9–16. https://doi.org/10.1111/hel.12095

    Article  CAS  PubMed  Google Scholar 

  55. Ottemann KM, Lowenthal AC (2002) Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun 70:1984–1990. https://doi.org/10.1128/iai.70.4.1984-1990.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kao CY, Sheu BS, Wu JJ (2016) Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical journal 39:14–23. https://doi.org/10.1016/j.bj.2015.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khalifeh Gholi M, Kalali B, Formichella L, Göttner G, Shamsipour F, Zarnani AH, Hosseini M, Busch DH, Shirazi MH, Gerhard M (2013) Helicobacter pylori FliD protein is a highly sensitive and specific marker for serologic diagnosis of H. pylori infection. Int J Med Microbio 303:618–623. https://doi.org/10.1016/j.ijmm.2013.08.005

    Article  CAS  Google Scholar 

  58. Yang FL, Lou TC, Kuo SC, Wu WL, Chern J, Lee YT, Chen ST, Zou W, Lin NT, Wu SH (2017) A medically relevant capsular polysaccharide in Acinetobacter baumannii is a potential vaccine candidate. Vaccine 35:1440–1447. https://doi.org/10.1016/j.vaccine.2017.01.060

    Article  CAS  PubMed  Google Scholar 

  59. Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19. https://doi.org/10.1016/j.tibs.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  60. Johnson KS, Ottemann KM (2018) Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr Opin Microbiol 41:51–57. https://doi.org/10.1016/j.mib.2017.11.019

    Article  CAS  PubMed  Google Scholar 

  61. Mendz GL, Burns BP (2003) Characterization of arginine transport in Helicobacter pylori. Helicobacter 8:245–251. https://doi.org/10.1046/j.1523-5378.2003.00151.x

    Article  CAS  PubMed  Google Scholar 

  62. Tan S, Noto JM, Romero-Gallo J, Peek RM Jr, Amieva MR (2011) Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog 7:e1002050. https://doi.org/10.1371/journal.ppat.1002050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cerda OA, Núñez-Villena F, Soto SE, Ugalde JM, López-Solís R, Toledo H (2011) tlpA gene expression is required for arginine and bicarbonate chemotaxis in Helicobacter pylori. Biol Res 44:277–282

    Article  CAS  PubMed  Google Scholar 

  64. Goers Sweeney E, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K (2012) Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Structure 20:1177–1188. https://doi.org/10.1016/j.str.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  65. Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ, Cantrell MA, Kuo CJ, Guillemin K, Amieva MR (2015) Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe 18:147–156. https://doi.org/10.1016/j.chom.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Croxen MA, Sisson G, Melano R, Hoffman PS (2006) The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 188:2656–2665. https://doi.org/10.1128/jb.188.7.2656-2665.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C, Suerbaum S (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA 101:5024–5029. https://doi.org/10.1073/pnas.0308386101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K (2011) Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 157:2445–2455. https://doi.org/10.1099/mic.0.049353-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Machuca MA, Johnson KS, Liu YC, Steer DL, Ottemann KM, Roujeinikova A (2017) Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate. Sci Rep 7:14089. https://doi.org/10.1038/s41598-017-14372-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collins KD, Andermann TM, Draper J, Sanders L, Williams SM, Araghi C, Ottemann KM (2016) The Helicobacter pylori CZB cytoplasmic chemoreceptor TlpD forms an autonomous polar chemotaxis signaling complex that mediates a tactic response to oxidative stress. J Bacteriol 198:1563–1575. https://doi.org/10.1128/jb.00071-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schweinitzer T, Mizote T, Ishikawa N, Dudnik A, Inatsu S, Schreiber S, Suerbaum S, Aizawa S, Josenhans C (2008) Functional characterization and mutagenesis of the proposed behavioral sensor TlpD of Helicobacter pylori. J Bacteriol 190:3244–3255. https://doi.org/10.1128/jb.01940-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abadi ATB (2017) Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol 23:2870–2882. https://doi.org/10.3748/wjg.v23.i16.2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM, Ottemann KM, Amieva MR (2011) ChePep controls Helicobacter pylori Infection of the gastric glands and chemotaxis in the epsilonproteobacteria. MBio. https://doi.org/10.1128/mBio.00098-11

    Article  PubMed  PubMed Central  Google Scholar 

  74. Clyne M, May FEB (2019) The interaction of Helicobacter pylori with TFF1 and Its Role in mediating the tropism of the bacteria within the stomach. Int J Mol Sci. https://doi.org/10.3390/ijms20184400

    Article  PubMed  PubMed Central  Google Scholar 

  75. Corfield AP (2018) The interaction of the Gut microbiota with the mucus barrier in health and disease in human. Microorganisms. https://doi.org/10.3390/microorganisms6030078

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B, Vitizeva V, Thorell A, Venkatakrishnan V, Lindén SK, Karlsson NG (2017) Structural diversity of human gastric mucin glycans. Mol Cell Proteomics. https://doi.org/10.1074/mcp.M117.067983

    Article  PubMed  PubMed Central  Google Scholar 

  77. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197. https://doi.org/10.1038/mi.2008.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buisine MP, Devisme L, Maunoury V, Deschodt E, Gosselin B, Copin MC, Aubert JP, Porchet N (2000) Developmental mucin gene expression in the gastroduodenal tract and accessory digestive glands. I. Stomach. A relationship to gastric carcinoma. J Histochem Cytochem Off J Histochem Soc 48:1657–1666. https://doi.org/10.1177/002215540004801209

    Article  CAS  Google Scholar 

  79. Radziejewska I, Borzym-Kluczyk M, Kisiel DG, Namiot Z, Wosek J, Gindzieński A (2008) The effect of Helicobacter pylori eradication treatment on the MUC 1 and Lewis antigens level in human gastric juice: a preliminary study. Dig Dis Sci 53:2641–2645. https://doi.org/10.1007/s10620-008-0224-z

    Article  PubMed  Google Scholar 

  80. Wang RQ, Fang DC (2006) Effects of Helicobacter pylori infection on mucin expression in gastric carcinoma and pericancerous tissues. J Gastroenterol Hepatol 21:425–431. https://doi.org/10.1111/j.1440-1746.2005.04006.x

    Article  CAS  PubMed  Google Scholar 

  81. Ho SB, Takamura K, Anway R, Shekels LL, Toribara NW, Ota H (2004) The adherent gastric mucous layer is composed of alternating layers of MUC5AC and MUC6 mucin proteins. Dig Dis Sci 49:1598–1606. https://doi.org/10.1023/b:ddas.0000043371.12671.98

    Article  CAS  PubMed  Google Scholar 

  82. Yang H, Yang WJ, Hu B (2022) Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 14:396–412. https://doi.org/10.4251/wjgo.v14.i2.396

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin TH, Sutton P, McGuckin MA (2009) MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 5:e1000617. https://doi.org/10.1371/journal.ppat.1000617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moonens K, Gideonsson P, Subedi S, Bugaytsova J, Romaõ E, Mendez M, Nordén J, Fallah M, Rakhimova L, Shevtsova A et al (2016) Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe 19:55–66. https://doi.org/10.1016/j.chom.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pang SS, Nguyen STS, Perry AJ, Day CJ, Panjikar S, Tiralongo J, Whisstock JC, Kwok T (2014) The three-dimensional structure of the extracellular adhesion domain of the sialic acid-binding adhesin SabA from Helicobacter pylori. J Biol Chem 289:6332–6340. https://doi.org/10.1074/jbc.M113.513135

    Article  CAS  PubMed  Google Scholar 

  86. Hage N, Howard T, Phillips C, Brassington C, Overman R, Debreczeni J, Gellert P, Stolnik S, Winkler GS, Falcone FH (2015) Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. Sci Adv 1:e1500315. https://doi.org/10.1126/sciadv.1500315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lindén S, Mahdavi J, Hedenbro J, Borén T, Carlstedt I (2004) Effects of pH on Helicobacter pylori binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem J 384:263–270. https://doi.org/10.1042/bj20040402

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA et al (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578. https://doi.org/10.1126/science.1069076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuipers EJ, Michetti P (2005) Bacteria and mucosal inflammation of the gut: lessons from Helicobacter pylori. Helicobacter 10(Suppl 1):66–70. https://doi.org/10.1111/j.1523-5378.2005.00336.x

    Article  PubMed  Google Scholar 

  90. Hamway Y, Taxauer K, Moonens K, Neumeyer V, Fischer W, Schmitt V, Singer BB, Remaut H, Gerhard M, Mejías-Luque R (2020) Cysteine residues in Helicobacter pylori Adhesin HopQ are required for CEACAM-HopQ interaction and subsequent CagA translocation. Microorganisms. https://doi.org/10.3390/microorganisms8040465

    Article  PubMed  PubMed Central  Google Scholar 

  91. Paraskevopoulou V, Schimpl M, Overman RC, Stolnik S, Chen Y, Nguyen L, Winkler GS, Gellert P, Klassen JS, Falcone FH (2021) Structural and binding characterization of the LacdiNAc-specific adhesin (LabA; HopD) exodomain from Helicobacter pylori. Curr Res Str Biol 3:19–29. https://doi.org/10.1016/j.crstbi.2020.12.004

    Article  CAS  Google Scholar 

  92. Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, Sjöström R, Mahdavi J, Shevtsova A, Ilver D et al (2017) Helicobacter pylori adapts to chronic infection and gastric disease via pH-responsive BabA-mediated adherence. Cell Host Microbe 21:376–389. https://doi.org/10.1016/j.chom.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hatakeyama M (2017) A sour relationship between BabA and Lewis b. Cell Host Microbe 21:318–320. https://doi.org/10.1016/j.chom.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  94. Roy R, Jonniya NA, Sk MF, Kar P (2022) Comparative structural dynamics of isoforms of helicobacter pylori adhesin baba bound to lewis b Hexasaccharide via multiple replica molecular dynamics simulations. Front Mol Biosci 9:852895. https://doi.org/10.3389/fmolb.2022.852895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yamaoka Y (2008) Increasing evidence of the role of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J Infect Dev Ctries 2:174–181. https://doi.org/10.3855/jidc.259

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yamaoka Y, Ojo O, Fujimoto S, Odenbreit S, Haas R, Gutierrez O, El-Zimaity HM, Reddy R, Arnqvist A, Graham DY (2006) Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55:775–781. https://doi.org/10.1136/gut.2005.083014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakayama J, Yeh JC, Misra AK, Ito S, Katsuyama T, Fukuda M (1999) Expression cloning of a human alpha1, 4-N-acetylglucosaminyltransferase that forms GlcNAcalpha1–>4Galbeta–>R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci USA 96:8991–8996. https://doi.org/10.1073/pnas.96.16.8991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M, Katsuyama T, Nakayama J (2004) Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305:1003–1006. https://doi.org/10.1126/science.1099250

    Article  CAS  PubMed  Google Scholar 

  99. Sáenz JB, Vargas N, Mills JC (2019) Tropism for spasmolytic polypeptide-expressing metaplasia allows Helicobacter pylori to expand its intragastric niche. Gastroenterology 156:160-174.e167. https://doi.org/10.1053/j.gastro.2018.09.050

    Article  PubMed  Google Scholar 

  100. Yang H, Zhou X, Hu B (2022) The ‘reversibility’ of chronic atrophic gastritis after the eradication of Helicobacter pylori. Postgrad Med 134:474–479. https://doi.org/10.1080/00325481.2022.2063604

    Article  CAS  PubMed  Google Scholar 

  101. Yang H, Hu B (2021) Diagnosis of Helicobacter pylori infection and recent advances. Diagnostics. https://doi.org/10.3390/diagnostics11081305

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Sichuan Province (2022NSFSC0819).

Author information

Authors and Affiliations

Authors

Contributions

HY wrote the main manuscript and prepared Fig. 13. LW revised the manuscript and prepared Fig. 1. MZ revised the manuscript and prepared Fig. 2. BH designed and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bing Hu.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, L., Zhang, M. et al. The Role of Adhesion in Helicobacter pylori Persistent Colonization. Curr Microbiol 80, 185 (2023). https://doi.org/10.1007/s00284-023-03264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03264-6

Navigation