Skip to main content
Log in

Influence of Cell Wall on Biomolecules Biosynthesis in Chlamydomonas reinhardtii Strains Exposed to Magnetic Fields

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The application of magnetic fields (MF) has attracted the attention of researchers due to their efficiency to change cell metabolism. Chlamydomonas reinhardtii is a biotechnologically useful microalga with versatile metabolism that may be a valuable organism to study the effects of the MF in biology. Therefore, two C. reinhardtii strains, one with cell wall (2137) and other which lacks the cell wall (Wt-S1—cc4694), were evaluated that a new sensitivity factor in the analysis could be included. Comparative studies were undertaken with the two C. reinhardtii strains under the MF intensities of 0.005 mT (terrestrial MF - control), 11  and 20 mT. Results indicated that the physical cell wall barrier protected cells against the MF applied during the assays. Only with the highest MF applied (20 mT) a slight increase in lipid concentration in the cell wall strain was detected. The lowest growth of the strain that lacks cell wall (Wt-S1) indicated that these cells are under a negative effect. To cope with the two MF stresses conditions, Wt-S1 cells produced more pigments (chlorophylls and carotenoids) and lipids and enhanced the antioxidant defense system. The raise of these compounds under MF could potentially have a positive biotechnological impact on algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data presented in this study are available upon request from the corresponding author.

Code Availability

Not applicable.

References

  1. Luo X, Zhang H, Li Q, Zhang J (2020) Effects of static magnetic field on Chlorella vulgaris: growth and extracellular polysaccharide (EPS) production. J Appl Phycol 32:2819–2828. https://doi.org/10.1007/s10811-020-02164-7

    Article  CAS  Google Scholar 

  2. Costa SS, Peres BP, Machado BR et al (2020) Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresour Technol 315:123880. https://doi.org/10.1016/j.biortech.2020.123880

    Article  CAS  PubMed  Google Scholar 

  3. Santos LO, Deamici KM, Menestrino BC et al (2017) Magnetic treatment of microalgae for enhanced product formation. World J Microbiol Biotechnol 33:1–6. https://doi.org/10.1007/s11274-017-2332-4

    Article  CAS  Google Scholar 

  4. Huo S, Chen X, Zhu F et al (2020) Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: influence of ambient temperature and operational strategy. Bioresour Technol 303:122884. https://doi.org/10.1016/j.biortech.2020.122884

    Article  CAS  PubMed  Google Scholar 

  5. Bauer LM, Costa JAV, da Rosa APC, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour Technol 244:1425–1432. https://doi.org/10.1016/j.biortech.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  6. Small DP, Hüner NP, Wan, W (2012) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308. https://doi.org/10.1002/bem.20706

    Article  CAS  PubMed  Google Scholar 

  7. Deamici KM, Santos LO, Costa JAV (2018) Magnetic field action on outdoor and indoor cultures of Spirulina: evaluation of growth, medium consumption and protein profile. Bioresour Technol 249:168–174. https://doi.org/10.1016/j.biortech.2017.09.185

    Article  CAS  PubMed  Google Scholar 

  8. Deamici KM, Costa JAV, Santos LO (2016) Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresour Technol 220:62–67. https://doi.org/10.1016/j.biortech.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  9. Wang H-Y, Zeng X-B, Guo S-Y, Li Z-T (2008) Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics 29:39–46. https://doi.org/10.1002/bem.20360

    Article  CAS  PubMed  Google Scholar 

  10. dos Santos LO, Gonzales TA, Úbeda BT, Alegre RM (2012) Glutathione production using magnetic fields generated by magnets. Brazilian Arch Biol Technol 55:921–926. https://doi.org/10.1590/S1516-89132012000600016

    Article  CAS  Google Scholar 

  11. Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54. https://doi.org/10.1002/bem.21883

    Article  CAS  PubMed  Google Scholar 

  12. Timmel CR, Cintolesi F, Brocklehurst B, Hore PJ (2001) Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions. Chem Phys Lett 334:387–395. https://doi.org/10.1016/S0009-2614(00)01436-6

    Article  CAS  Google Scholar 

  13. Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13:6226–6246. https://doi.org/10.3390/md13106226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sigaud- Kutner TCS, Leitao MAS, Okamoto OK (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  Google Scholar 

  15. Banerjee S, Ray A, Das D (2021) Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO2 sequestration and biofuels production in a biorefinery framework. Sci Total Environ 762:143080. https://doi.org/10.1016/j.scitotenv.2020.143080

    Article  CAS  PubMed  Google Scholar 

  16. Almaraz-Delgado AL, Flores-Uribe J, Pérez-España VH et al (2014) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4:57. https://doi.org/10.1186/s13568-014-0057-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsien Chiao Teng (2005) A puzzle of the effect of magnetic field on biological cells. Life Sci J 2:16–21

    Google Scholar 

  18. Repacholi MH, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20:133–160. https://doi.org/10.1002/(sici)1521-186x(1999)20:3%3c133::aid-bem1%3e3.0.co;2-o

    Article  CAS  PubMed  Google Scholar 

  19. Perez VH, Reyes AF, Justo OR et al (2007) Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae. Biotechnol Prog 23:1091–1094. https://doi.org/10.1021/bp070078k

    Article  CAS  PubMed  Google Scholar 

  20. Ohata R, Tomita N, Ikada Y (2004) Effect of a static magnetic field on ion transport in a cellulose membrane. J Colloid Interface Sci 270:413–416. https://doi.org/10.1016/j.jcis.2003.09.035

    Article  CAS  PubMed  Google Scholar 

  21. Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217. https://doi.org/10.1021/es00092a010

    Article  CAS  Google Scholar 

  22. Esquível MG, Matos AR, Marques Silva J (2017) Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation. Appl Microbiol Biotechnol 101:5569–5580. https://doi.org/10.1007/s00253-017-8322-5

    Article  CAS  PubMed  Google Scholar 

  23. Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci USA 54:1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  CAS  PubMed  Google Scholar 

  26. Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  27. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576

    Article  CAS  PubMed  Google Scholar 

  28. Oyaizu M (1986) Studies on products of browning reaction. Japanese J Nutr Diet 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  29. do Rufino MSMSM, Alves RE, de Brito ES et al (2007) Metodologia científica: determinação da atividade antioxidante total em frutas pela Captura do Radical Livre DPPH. Comun Técnico online 127:1–4

    Google Scholar 

  30. do Rufino MSMSM, Alves RE, de Brito ES et al (2007) Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS +. Comun Técnico online 128:1–4

    Google Scholar 

  31. Deamici KM, Cardias BB, Costa JAV, Santos LO (2016) Static magnetic fields in culture of Chlorella fusca: Bioeffects on growth and biomass composition. Process Biochem 51:912–916. https://doi.org/10.1016/j.procbio.2016.04.005

    Article  CAS  Google Scholar 

  32. Pazur A, Schimek C, Galland P (2007) Magnetoreception in microorganisms and fungi. Cent Eur J Biol 2:597–659. https://doi.org/10.2478/s11535-007-0032-z

    Article  CAS  Google Scholar 

  33. Pazur A, Scheer H (1992) The Growth of freshwater green algae in weak alternating magnetic fields of 7.8 Hz frequency. Zeitschrift fur Naturforsch - Sect C J Biosci 47:690–694. https://doi.org/10.1515/znc-1992-9-1009

    Article  Google Scholar 

  34. Hallmann A (2011) Evolution of reproductive development in the volvocine algae. Sex Plant Reprod 24:97–112. https://doi.org/10.1007/s00497-010-0158-4

    Article  CAS  PubMed  Google Scholar 

  35. Tu R, Jin W, Xi T et al (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res 86:132–138. https://doi.org/10.1016/j.watres.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  36. Maret G, Dransfeld K (1977) Macromolecules and membranes in high magnetic fields. Phys B+C 86–88:1077–1083. https://doi.org/10.1016/0378-4363(77)90800-2

    Article  Google Scholar 

  37. Collis CS, Segal MB (1988) Effects of pulsed electromagnetic fields on Na+ fluxes across stripped rabbit colon epithelium. J Appl Physiol 65:124–130

    Article  CAS  PubMed  Google Scholar 

  38. Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419. https://doi.org/10.1007/s002440010122

    Article  CAS  PubMed  Google Scholar 

  39. Ting YP, Lawson F, Prince IG (1989) Uptake of cadmium and zinc by the alga Chlorella vulgaris: Part 1 individual ion species. Biotechnol Bioeng 34:990–999. https://doi.org/10.1002/bit.260340713

    Article  CAS  PubMed  Google Scholar 

  40. Luna LG, Álvarez I, Rivero R (2011) Cultivo de Chlorella vulgaris sobre residual de soja con la aplicación de un campo magnético. Rev colomb biotecnol 13:27–38

    CAS  Google Scholar 

  41. Li C, Hu Z, Gao Y et al (2022) Bioeffects of static magnetic fields on the growth and metabolites of C. pyrenoidosa and T. obliquus. J Biotechnol 351:1–8. https://doi.org/10.1016/j.jbiotec.2022.04.004

    Article  CAS  PubMed  Google Scholar 

  42. Tang H, Wang P, Wang H et al (2019) Effect of static magnetic field on morphology and growth metabolism of Flavobacterium sp. m1–14. Bioprocess Biosyst Eng 42:1923–1933. https://doi.org/10.1007/s00449-019-02186-7

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Horsman M, Wang B et al (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636. https://doi.org/10.1007/s00253-008-1681-1

    Article  CAS  PubMed  Google Scholar 

  44. Sahin MS, Khazi MI, Demirel Z, Dalay MC (2019) Variation in growth, fucoxanthin, fatty acids profile and lipid content of marine diatoms Nitzschia sp. and Nanofrustulum shiloi in response to nitrogen and iron. Biocatal Agric Biotechnol 17:390–398. https://doi.org/10.1016/j.bcab.2018.12.023

    Article  Google Scholar 

  45. Yamaoka Y, Takimura O, Fuse H, Kamimura K (1992) Effect of magnetism on growth of Dunaliella salina. Res Photosynth 3:87–90

    Article  CAS  Google Scholar 

  46. Li ZY, Guo SY, Li L, Cai MY (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour Technol 98:700–705. https://doi.org/10.1016/j.biortech.2006.01.024

    Article  CAS  PubMed  Google Scholar 

  47. Finkle BJ, Appleman D (1953) The effect of magnesium concentration on chlorophyll and catalase development in Chlorella. Plant Physiol 28:652–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qari HA, Oves M (2020) Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J Bioenerg Biomembr 52:27–38. https://doi.org/10.1007/s10863-019-09813-8

    Article  CAS  PubMed  Google Scholar 

  49. Santos LO, Silva PGP, Machado BR et al (2022) Update on the application of magnetic fields to microalgal cultures. World J Microbiol Biotechnol 38:211. https://doi.org/10.1007/s11274-022-03398-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Council for Scientific and Technological Development (CNPq-Brazil) and Fundação para a Ciência e Tecnologia (FCT-Portugal). This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil, Finance Code 001.

Funding

The present study was financed by CNPq - Conselho Nacional de Desenvolvimento Científco e Tecnológico supported) and Fundação para a Ciência e Tecnologia (FCT-Portugal), through the research units LEAF (UID/AGR/04129/2020) and the FCT/CAPES transnational cooperation FCT-2367/CAPES-10343/13.

Author information

Authors and Affiliations

Authors

Contributions

LMB; MGE; JAVC; APC R and LOS contributed to the study conception and design. Material preparation, data collection and analysis were performed by LMB. The first draft of the manuscript was written by LMB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lucielen O. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors agree to submit the paper to Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, L.M., da Gloria Esquível, M., Costa, J.A.V. et al. Influence of Cell Wall on Biomolecules Biosynthesis in Chlamydomonas reinhardtii Strains Exposed to Magnetic Fields. Curr Microbiol 80, 96 (2023). https://doi.org/10.1007/s00284-023-03189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03189-0

Navigation