Skip to main content
Log in

Bacillus Swezeyi B2 Strain: A Novel Alkaliphilic Bacterium Producer of Alkaline-, Thermal, Oxidant-, and Surfactant-Stable Protease, Extremely Efficient in Detergency

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Proteolytic enzymes that are currently used to meet industrial demand are usually derived from Bacillus species. They find multiple technical applications, particularly they have been increasingly used as a key bio-additive in detergents. In this study, a novel alkalophilic bacterium was isolated from contaminated soil, exhibiting 1400 U/ml proteolytic activity, and identified as Bacillus swezeyi B2. The crude enzyme likely contained a single extracellular protease. This enzyme revealed optimum activity at pH 10 and 70 °C and was highly alkaline thermostable (7–12.5) and up to 70 °C. The protease activity was completely inhibited by Phenylmethylsulfonyl fluoride (PMSF) suggesting that it belongs to the serine protease group. It was highly stable in the presence of the strong anionic surfactant (SDS) and oxidizing agents (H2O2). The supernatant was lyophilized and showed high storage stability retaining 100% of its original activity after one year of conservation at 4 °C. The lyophilized product was evaluated for its detergent efficacy, it revealed excellent compatibility with various laundry detergents keeping its full original activity after incubation for 1 h with seven solid and liquid commercial detergents and it effectively removed chocolate stains at low washing temperature (40 °C) and low supplementation level (125 U/ml). The features of this single alkaline and thermotolerant protease, stable toward surfactants, oxidizing agents, and commercial detergents with stain removal efficacy support its ideal choice for supplementation in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The 16S rRNA gene sequence is available in the GenBank database. The accession number is OP363244.

Code Availability

Not applicable.

References

  1. Hadjidj R, Badis A, Mechri S et al (2018) Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.03.167

    Article  PubMed  Google Scholar 

  2. Mushtaq H, Jehangir A, Ganai SA et al (2021) Biochemical characterization and functional analysis of heat stable high potential protease of Bacillus amyloliquefaciens strain HM48 from soils of Dachigam National Park in Kashmir Himalaya. Biomolecules. https://doi.org/10.3390/biom11010117

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salwan R, Sharma V (2019) Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Arch Microbiol 201:863–877. https://doi.org/10.1007/s00203-019-01662-8

    Article  CAS  PubMed  Google Scholar 

  4. Razzaq A, Shamsi S, Ali A et al (2019) Microbial proteases applications. Front Bioeng Biotechnol 7:110. https://doi.org/10.3389/fbioe.2019.00110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Niyonzima FN, More S (2015) Detergent-compatible proteases: microbial production, properties, and stain removal analysis. Prep Biochem Biotechnol 45:233–258. https://doi.org/10.1080/10826068.2014.907183

    Article  CAS  PubMed  Google Scholar 

  6. Cui H, Yang M, Wang L, Xian CJ (2015) Identification of a new marine bacterial strain SD8 and optimization of its culture conditions for producing alkaline protease. PLoS ONE 10:e0146067. https://doi.org/10.1371/journal.pone.0146067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manavalan T, Manavalan A, Ramachandran S, Heese K (2020) Identification of a novel thermostable alkaline protease from Bacillus megaterium-TK1 for the detergent and leather industry. Biology (Basel) 9:472. https://doi.org/10.3390/biology9120472

    Article  CAS  PubMed  Google Scholar 

  8. Nagata M, Matsumura T (1986) Action of the bacterial neutral protease, dispase, on cultured cells and its application to fluid suspension culture with a review on biomedical application of this protease. Jpn J Exp Med 56:297–307

    CAS  PubMed  Google Scholar 

  9. Stenn KS, Link R, Moellmann G et al (1989) Dispase, a neutral protease from Bacillus Polymyxa, is a powerful fibronectinase and type IV collagenase. J Invest Dermatol 93:287–290. https://doi.org/10.1111/1523-1747.ep12277593

    Article  CAS  PubMed  Google Scholar 

  10. Betzel C, Klupsch S, Branner S, Wilson KS (1996) Crystal structures of the alkaline proteases savinase and esperase from Bacillus lentus. Adv Exp Med Biol 379:49–61. https://doi.org/10.1007/978-1-4613-0319-0_7

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs M, Eliasson M, Uhlén M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926. https://doi.org/10.1093/nar/13.24.8913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corîci LN, Frissen AE, van Zoelen D-J et al (2011) Sol–gel immobilization of alcalase from Bacillus licheniformis for application in the synthesis of C-terminal peptide amides. J Mol Catal B Enzym 73:90–97. https://doi.org/10.1016/j.molcatb.2011.08.004

    Article  CAS  Google Scholar 

  13. Danilova I, Sharipova M (2020) The practical potential of Bacilli and their enzymes for industrial production. Front Microbiol 11:1782. https://doi.org/10.3389/fmicb.2020.01782

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rozanov A, Shekhovtsov S, Bogacheva N et al (2021) Production of subtilisin proteases in bacteria and yeast. Vavilov J Genet Breed 25:125–134. https://doi.org/10.18699/VJ21.015

    Article  CAS  Google Scholar 

  15. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32. https://doi.org/10.1007/s00253-002-0975-y

    Article  CAS  PubMed  Google Scholar 

  16. Thaz CJ, Jayaraman G (2014) Stability and detergent compatibility of a predominantly β-sheet serine protease from halotolerant B. aquimaris VITP4 strain. Appl Biochem Biotechnol 172:687–700. https://doi.org/10.1007/s12010-013-0524-4

    Article  CAS  PubMed  Google Scholar 

  17. Poza M, Ageitos JM, Vallejo J et al (2007) Industrial applications of microbial proteases and genetic engineering. In: Villa TG (ed) Hot spots in applied microbiology. Research Signpost, Beltsville, pp 91–125

    Google Scholar 

  18. Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Int J Biol Macromol 128:254–267. https://doi.org/10.1016/j.ijbiomac.2019.01.081

    Article  CAS  PubMed  Google Scholar 

  19. Yildirim V, Baltaci MO, Ozgencli I et al (2017) Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents. J Enzyme Inhib Med Chem 32:468–477. https://doi.org/10.1080/14756366.2016.1261131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baweja M, Tiwari R, Singh PK et al (2016) An alkaline protease from Bacillus pumilus MP 27: functional analysis of its binding model toward its applications as detergent additive. Front Microbiol 7:1195. https://doi.org/10.3389/fmicb.2016.01195

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haddar A, Sellami-Kamoun A, Fakhfakh-Zouari N et al (2010) Characterization of detergent stable and feather degrading serine proteases from Bacillus mojavensis A21. Biochem Eng J 51:53–63. https://doi.org/10.1016/j.bej.2010.05.002

    Article  CAS  Google Scholar 

  22. Guo C, Sun C, Wu S (2022) Screening and characterization of proteases produced by deep-sea cold seep bacteria. J Ocean Limnol 40:678–689. https://doi.org/10.1007/s00343-021-0441-2

    Article  Google Scholar 

  23. Vivancos J-L, Rácz Z, Cole M, Gardner JW (2012) Surface acoustic wave based analytical system for the detection of liquid detergents. Sens Actuators B Chem 171–172:469–477. https://doi.org/10.1016/j.snb.2012.05.014

    Article  CAS  Google Scholar 

  24. Yadav V, Singh V, Mishra V (2019) Alkaline protease: a tool to manage solid waste and its utility in detergent industry. Microb Genom Sustain Agroecosystems. https://doi.org/10.1007/978-981-32-9860-6_14

    Article  Google Scholar 

  25. Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl Biochem Biotechnol 38:83–92. https://doi.org/10.1007/BF02916414

    Article  CAS  PubMed  Google Scholar 

  26. Dunlap C, Schisler D, Perry E et al (2017) Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.002007

    Article  PubMed  Google Scholar 

  27. Manni L, Jellouli K, Ghorbel-Bellaaj O et al (2010) An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. Appl Biochem Biotechnol 160:2308–2321. https://doi.org/10.1007/s12010-009-8703-z

    Article  CAS  PubMed  Google Scholar 

  28. Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78:643–650. https://doi.org/10.1007/s00253-008-1355-z

    Article  CAS  PubMed  Google Scholar 

  29. Ghorbel-Bellaaj O, Jellouli K, Younes I et al (2011) A solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164:410–425. https://doi.org/10.1007/s12010-010-9144-4

    Article  CAS  PubMed  Google Scholar 

  30. Hammami A, Hamdi M, Abdelhedi O et al (2016) Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae: characterization and potential applications in chitin extraction and as a detergent additive. Int J Biol Macromol 96:272–281. https://doi.org/10.1016/j.ijbiomac.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  31. Hmidet N, El-Hadj Ali N, Haddar A et al (2009) Alkaline proteases and thermostable α-amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 47:71–79. https://doi.org/10.1016/j.bej.2009.07.005

    Article  CAS  Google Scholar 

  32. Nazari L, Mehrabi M (2019) Purification and characterization of an extracellular thermotolerant alkaliphilic serine protease secreted from newly isolated Bacillus sp. DEM07 from a hot spring in Dehloran, Iran. J Biocatal Agric Biotechnol. https://doi.org/10.1016/J.BCAB.2019.101053

    Article  Google Scholar 

  33. Mechri S, Kriaa M, Ben Elhoul Berrouina M et al (2017) Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 101:383–397. https://doi.org/10.1016/j.ijbiomac.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  34. Nadeem QJ, Syed Q, Gulsher M (2013) Purification and characterization of an alkaline protease from Bacillus licheniformis UV-9 for detergent formulations. Songklanakarin J Sci Technol 35:187–195

    CAS  Google Scholar 

  35. Sari E, Loğoğlu E, Öktemer A (2015) Purification and characterization of organic solvent stable serine alkaline protease from newly isolated Bacillus circulans M34. Biomed Chromatogr BMC 29:1356–1363. https://doi.org/10.1002/bmc.3431

    Article  CAS  PubMed  Google Scholar 

  36. Mokashe N, Chaudhari B, Patil U (2017) Detergent-compatible robust alkaline protease from newly isolated halotolerant Salinicoccus sp. UN-12. J Surfactants Deterg 20:1–17. https://doi.org/10.1007/s11743-017-2024-y

    Article  CAS  Google Scholar 

  37. Rekik H, Jaouadi NZ, Gargouri F et al (2019) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.10.139

    Article  PubMed  Google Scholar 

  38. Emran MA, Ismail SA, Abdel-Fattah AM (2020) Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. J Biocatal Agric Biotechnol 27:101674. https://doi.org/10.1016/j.bcab.2020.101674

    Article  Google Scholar 

  39. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305. https://doi.org/10.1016/j.biochi.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Nazari A, Montazer M, Afzali F, Sheibani A (2014) Optimization of proteases pretreatment on natural dyeing of wool using response surface methodology. Clean Technol Environ Policy 16:1081–1093. https://doi.org/10.1007/s10098-013-0709-0

    Article  CAS  Google Scholar 

  41. Mechri S, Ben Elhoul Berrouina M, Omrane Benmrad M et al (2017) Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int J Biol Macromol 94:221–232. https://doi.org/10.1016/j.ijbiomac.2016.09.112

    Article  CAS  PubMed  Google Scholar 

  42. Sellami-Kamoun A, Haddar A, Ali NE-H et al (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res 163:299–306. https://doi.org/10.1016/j.micres.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  43. Jellouli K, Ghorbel-Bellaaj O, Ayed HB et al (2011) Alkaline-protease from Bacillus licheniformis MP1: purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochem 46:1248–1256. https://doi.org/10.1016/j.procbio.2011.02.012

    Article  CAS  Google Scholar 

  44. Yilmaz B, Baltaci MO, Sisecioglu M, Adiguzel A (2016) Thermotolerant alkaline protease enzyme from Bacillus licheniformis A10: purification, characterization, effects of surfactants and organic solvents. J Enzyme Inhib Med Chem 31:1241–1247. https://doi.org/10.3109/14756366.2015.1118687

    Article  CAS  PubMed  Google Scholar 

  45. Emran MA, Ismail SA, Hashem AM (2020) Production of detergent stable thermophilic alkaline protease by Bacillus licheniformis ALW1. Biocatal Agric Biotechnol 26:101631. https://doi.org/10.1016/j.bcab.2020.101631

    Article  Google Scholar 

  46. Lakshmi BKM, Muni Kumar D, Hemalatha KPJ (2018) Purification and characterization of alkaline protease with novel properties from Bacillus cereus strain S8. J Genet Eng Biotechnol 16:295–304. https://doi.org/10.1016/j.jgeb.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma S, Kumar S, Kaur R, Kaur R (2021) Multipotential alkaline protease from a novel Pyxidicoccus sp. 252: ecofriendly replacement to various chemical processes. Front Microbiol 12:2722. https://doi.org/10.3389/fmicb.2021.722719

    Article  Google Scholar 

  48. Smith CA, Toogood HS, Baker HM et al (1999) Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 å resolution. J Mol Biol 294:1027–1040. https://doi.org/10.1006/jmbi.1999.3291

    Article  CAS  PubMed  Google Scholar 

  49. Hammami A, Fakhfakh N, Abdelhedi O et al (2018) Proteolytic and amylolytic enzymes from a newly isolated Bacillus mojavensis SA: characterization and applications as laundry detergent additive and in leather processing. Int J Biol Macromol 108:56–68. https://doi.org/10.1016/j.ijbiomac.2017.11.148

    Article  CAS  PubMed  Google Scholar 

  50. Hammami A, Bayoudh A, Hadrich B et al (2020) Response-surface methodology for the production and the purification of a new H2O2-tolerant alkaline protease from Bacillus invictae AH1 strain. Biotechnol Prog 36:e2965. https://doi.org/10.1002/btpr.2965

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research work was funded by the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Performance of experiments, writing of original draft: ME; Supervision and manuscript review: NH and SG; Data analysis: ME, NH, and SG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Noomen Hmidet.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Consent for Publications

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhamdi, M., Ghorbel, S. & Hmidet, N. Bacillus Swezeyi B2 Strain: A Novel Alkaliphilic Bacterium Producer of Alkaline-, Thermal, Oxidant-, and Surfactant-Stable Protease, Extremely Efficient in Detergency. Curr Microbiol 80, 95 (2023). https://doi.org/10.1007/s00284-022-03156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03156-1

Navigation