Skip to main content
Log in

Stability and Detergent Compatibility of a Predominantly β-Sheet Serine Protease from Halotolerant B. aquimaris VITP4 Strain

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study deals with the characterization of halotolerant protease produced by Bacillus aquimaris VITP4 strain isolated from Kumta coast, Karnataka, India. The studies were performed at 40 °C and pH 8 in Tris buffer. Metal ions such as Mn2+ and Ca2+ increased the proteolytic activity of the enzyme by 34 and 30 %, respectively, at 10 mM concentration. Cu2+ at 1 mM concentration was found to enhance the enzyme activity by 16 %, whereas inhibition was observed at higher concentration (>5 mM). Slight inhibition was observed even with lower (>1 mM) concentrations of Zn2+, Hg2+, Fe3+, Ni2+, and Co2+.The activity of protease was completely inhibited by phenylmethylsulfonyl fluoride, indicating that the VITP4 protease is a serine protease. The presence of ethylenediaminetetraacetic acid and 1,10-phenanthroline (>5 mM) moderately inhibited the activity, suggesting that the enzyme is activated by metal ions. The protease was purified to homogeneity with a purification fold of 15.7 with ammonium sulfate precipitation and 46.65 with gel filtration chromatography using Sephadex G-100, resulting in a specific activity of 424 ± 2.6 U mg−1. The VITP4 protease consists of a single polypeptide chain with a molecular mass of 34.7 kDa as determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization–time of flight. Among the different substrates used (casein, egg albumin, gelatin, and bovine serum albumin), the activity was higher with casein with V max, K m, and k cat values of 0.817 mg ml min−1, 0.472 mg ml−1, and 2.31 s−1, respectively. Circular dichroism studies revealed that the VITP4 protease has a predominantly β-sheet structure (51.6 %) with a temperature for half denaturation of 85.8 °C in the presence of 1 mM CaCl2. Additionally, the VITP4 protease was found to retain more than 70 % activity in the presence of 10 mM concentration of different detergents (CTAB, urea, and sodium dodecyl sulfate) and surfactants (Triton X-100, Tween-20, and Tween-80), and the results of wash performance test with various commercial detergents confirmed that it can be used in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Setati, M. E. (2010). African Journal of Biotechnology, 9, 1555–1560.

    CAS  Google Scholar 

  2. Jaouadi, B., Abdelmalek, B., Jaouadib, N.Z., & Bejar, S. (2011). Progress in molecular and environmental bioengineering—From analysis and modeling to technology applications. In: A. Carpi (Ed.). Rijeka: InTech. ISBN 978-953-307-268-5.

  3. Hameed, A., Keshavarz, T., & Evans, C. S. (1999). Journal of Chemical Technology and Biotechnology, 74, 5–8.

    Article  CAS  Google Scholar 

  4. Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Applied Microbiology and Biotechnology, 59, 15–32.

    Article  CAS  Google Scholar 

  5. Chanalia, P., Gandhi, D., Jodha, D., & Singh, J. (2011). Reviews of Medical Microbiology, 22, 96–101.

    Article  Google Scholar 

  6. Neklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Applied Biochemistry and Microbiology, 36, 452–459.

    Article  Google Scholar 

  7. Qiuhong, N., Xiaowei, H., Baoyu, T., Jinkui, Y., Jiang, L., Lin, Z., et al. (2006). Applied Microbiology and Biotechnology, 69, 722–730.

    Article  Google Scholar 

  8. Bhunia, B., Basak, B., & Dey, A. (2012). Journal of Biochemistry and Technical, 3, 448–457.

    CAS  Google Scholar 

  9. Michael, J., Liszka Melinda, E., Elizabeth, C. S., & Douglas, S. (2012). Annual Review of Chemical Biomolecular Engineering, 3, 77–102.

    Article  Google Scholar 

  10. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Microbiology and Moecularl Biology Reviews, 62, 504–544.

    CAS  Google Scholar 

  11. Eichler, J. (2001). Biotechnology Advances, 19, 261–278.

    Article  CAS  Google Scholar 

  12. Joo, H. S., & Chang, C. S. (2005). Journal of Applied Microbiology, 98, 491–497.

    Article  CAS  Google Scholar 

  13. Singh, S. K., Singh, S. K., Tripathi, V. R., & Garg, S. K. (2012). Process Biochemistry, 47, 1479–1487.

    Article  CAS  Google Scholar 

  14. Das Sarma, S., & Arora, P. (2001). Encyclopedia of life sciences (pp. 1–9). London: Nature Publishing Group.

    Google Scholar 

  15. Setyorini, E., JuKim, Y., Takenaka, S., Murakami, S., & Aoki, K. (2006). Journal of Basic Microbiology, 4, 294–304.

    Article  Google Scholar 

  16. Singh, S. K., Tripathi, V. R., Jain, R. K., Vikram, S., & Garg, S. K. (2010). Microbial Cell Factories, 9, 59–66.

    Article  Google Scholar 

  17. Hezayen, F. F., Younis, M. A. M., Hagaggi, N. S. A., & Shabeb, M. S. A. (2010). Global Journal of Molecular Sciences, 5, 01–06.

    CAS  Google Scholar 

  18. Anonyme. (2007). World enzymes to 2011 (2229). Focus on catalysts. 2–2.

  19. Deepti, J., Imran, P., Sanjiv, K. M., Anupama, S., & Sandhya, M. (2012). Bioresource Technology, 15, 3406–3409.

    Google Scholar 

  20. Shivanand, P., & Jayaraman, G. (2009). Process Biochemistry, 44, 1088–1094.

    Article  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Rondal, R. L. (1951). Journal of Biological Chemistry, 193, 265–273.

    CAS  Google Scholar 

  22. Gertrude, E., Perlmann, & Lazlo, L. (1976). Part B: Proteolytic enzymes. Methods in Enzymology, 45, 20–26.

    Google Scholar 

  23. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Yang, J. T., Wu, C. S., & Martinez, H. M. (1986). Methods in Enzymology, 130, 208–269.

    Article  CAS  Google Scholar 

  25. Shivanand, P., & Jayaraman, G. (2011). Indian Journal of Biochemistry and Biophysics, 48, 95–100.

    CAS  Google Scholar 

  26. Anupama, A., & Jayaraman, G. (2011). International Journal of Applied Biology and Pharmaceutical Technology, 2, 366–376.

    Google Scholar 

  27. Setyorini, E., Takenaka, S., Murakami, S., & Aoki, K. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 433–440.

    Article  CAS  Google Scholar 

  28. Xiong, H., Song, L., Xu, Y., Tsoi, M. Y., Dobrestsov, S., & Yuan Qian, P. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 63–71.

    Article  CAS  Google Scholar 

  29. Takenaka, S., Yoshida, N., Yoshida, K., Murakami, S., & Aoki, K. (2011). Bioscience, Biotechnology, and Biochemistry, 75, 148–151.

    Article  CAS  Google Scholar 

  30. Ahmed, I., Zia, M. A., & Iqbal, H. M. N. (2011). World Applied Sciences Journal, 12, 751–757.

    CAS  Google Scholar 

  31. Singh, J., Batra, N., & Sobti, R. C. (2001). Process Biochemistry, 36, 781–785.

    Article  CAS  Google Scholar 

  32. Moradian, F., Khajeh, K., Naderimanesh, H., & Sadeghizadeh, M. (2009). Applied Biochemistry Biotechnology, 159, 33–45.

    Article  CAS  Google Scholar 

  33. Baehaki, A., Suhartono, M. T., Sukarno, S. D., Sitanggnag, A. B., Setyahadi, S., & Meinhardt, F. (2012). African Journal of Microbiology Research, 6, 2373–2379.

    CAS  Google Scholar 

  34. Uyar, F., Porsuk, I., Kizil, G., & Yilmaz, E. I. (2011). Eurasia Journal of Biosciences, 5, 1–9.

    Article  Google Scholar 

  35. Deng, A., Wua, J., Zhang, Y., Zhang, G., & Wena, T. (2010). Bioresource Technology, 101, 7100–7106.

    Article  CAS  Google Scholar 

  36. Ozturk, S., Morgan-Ozeren, M., Salman-Dilgiman, A., Denizci, A. A., Arikan, B. S., & Kazan, D. (2009). Annals of Microbiology, 59, 1–8.

    Article  Google Scholar 

  37. Gupta, A., Roy, I., Patel, R. K., Singh, S. P., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography Part A, 1075, 103–108.

    Article  CAS  Google Scholar 

  38. Paliwal, N., Singh, S. P., & Garg, S. K. (1994). Bioresource Technology, 50, 209–211.

    Article  CAS  Google Scholar 

  39. Gupta, A., & Khare, S. K. (2007). Enzyme Microbial Technical, 42, 11–16.

    Article  CAS  Google Scholar 

  40. Akel, H., Al-Quadan, F., & Yousef, T. K. (2009). European Journal of Scientific Research, 31, 280–288.

    Google Scholar 

  41. Arulmani, M., Aparanjini, K., Vasanthi, P., Arumugam, M., Arivuchelvi, & Kalaichelvan, T. (2007). World Journal of Microbiology and Biotechnology, 23, 475–481.

    Article  CAS  Google Scholar 

  42. Yossan, S., Reungsang, A., & Yasuda, M. (2006). Science Asia, 32, 377–383.

    Article  CAS  Google Scholar 

  43. Bezawada, J., Yan, S., John, R.P., Tyagi, R.D., & Surampalli, R.Y. (2011). Biotechnology Research International, 2011, 1–11. doi:10.4061/2011/238549.

  44. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.

    Article  CAS  Google Scholar 

  45. Sinha, R., & Khare, S. K. (2012). Indian Journal of Biotechnology, 11, 416–426.

    CAS  Google Scholar 

  46. Imran, K., Puja, G., & Jyoti, V. (2011). African Journal of Microbiology Research, 5, 3968–3975.

    Google Scholar 

  47. Devi Rajeswari, V., Jayaraman, G., & Sridharan, T. B. (2012). Asian Journal of Biochemistry, 7, 123–132.

    Article  Google Scholar 

  48. Mahendran, S., Sankaralingam, S., Shankar, T., & Vijayabaskar, P. (2010). World Journal of Fish and Marine Sciences, 5, 436–443.

    Google Scholar 

  49. Toyokawa, Y., Takahara, H., Reungasang, A., Fukuta, M., Hachimine, Y., Tachiban, S., et al. (2010). Applied Microbiology and Biotechnology, 86, 1867–1875.

    Article  CAS  Google Scholar 

  50. Patil, C. S., Gangawanw, A. K., Shankerappa, & Hatti, S. (2010). Journal of Plant genomics, 1, 09–17.

    CAS  Google Scholar 

Download references

Acknowledgments

C. Jabeena Thaz is a recipient of a UGC-MAN Fellowship (201011-MANF-MUS-AND-1551). The research facility provided by the VIT University (Vellore, India) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurunathan Jayaraman.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaz, C.J., Jayaraman, G. Stability and Detergent Compatibility of a Predominantly β-Sheet Serine Protease from Halotolerant B. aquimaris VITP4 Strain. Appl Biochem Biotechnol 172, 687–700 (2014). https://doi.org/10.1007/s12010-013-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0524-4

Keywords

Navigation