Skip to main content
Log in

Neoroseomonas marina sp. nov., Isolated from a Beach Sand

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A pink-pigmented bacterium (strain JC162T = KCTC 32190T) was isolated from a beach sand sample. Cells were Gram-stain-negative, coccoid, non-motile, and strictly aerobic. EzBioCloud BLAST search of 16S rRNA gene sequence showed that strain KCTC 32190T had the highest sequence identity to the members of the genus Neoroseomonas and was closely related to N. oryzicola YC6724T (99.8%), N. sediminicola FW-3T (98.5%), N. soli 5N26T (98.2%), and other members of the genus Neoroseomonas (< 97.9%) in the family Acetobacteriaceae within the class of Alphaproteobacteria. Chemo-organoheterotrophy was the only growth mode and growth was possible on a wide range of organic substrates. Strain KCTC 32190T was positive for catalase and oxidase. Fatty acid composition of strain KCTC 32190T includes (in decreasing %) C18:1ω7c, cyclo-C19:0ω8c, C18:02-OH, C16:0, C18:03-OH, C16:1ω7c/C16:1ω6c, C16:02-OH and C16:1ω5c. Polar lipids comprised of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified amino lipid, and three unidentified lipids. The genomic DNA G+C content of the strain KCTC 32190T was 70.9 mol%. Strain KCTC 32190T has a low ANI value of < 92.7% and genome reassociation (based on digital DNA-DNA hybridization) value of < 48.8% with the nearest type strains. The genome relatedness is supported by other polyphasic taxonomic data to propose strain KCTC 32190T as a new species in the genus Neoroseomonas with the name Neoroseomonas marina sp. nov. The type strain is strain JC162T (KCTC 32190T = CGMCC1.12364T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NCBI:

National Center for Biotechnology Information

ANI:

Average Nucleotide Identity

dDDH:

Digital DNA-DNA Hybridization

BLAST:

Basic Local Alignment Search Tool

MUSCLE:

Multiple Sequence Comparison by Log-Expectation

KCTC:

Korean Collection for Type Cultures

CGMCC:

China General Microbiological Culture Collection Centre

References

  1. Patel NY, Baria DM, Yagnik SM, Rajput KN, Panchal RR (2021) Bio-prospecting the future in perspective of amidohydrolase L-glutaminase from marine habitats. Appl Microbiol Biotechnol 105:5325–5340. https://doi.org/10.1007/s00253-021-11416-6

    Article  CAS  PubMed  Google Scholar 

  2. Short AD (2012) Coastal processes and beaches. Nat Educ Knowl 3:1

    Google Scholar 

  3. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

  4. Mineta K, Gojobori T (2016) Databases of the marine metagenomics. Gene 1:724–728. https://doi.org/10.1016/j.gene.2015.10.035

    Article  CAS  Google Scholar 

  5. Dell’Anno F, van Zyl LJ, Trindade M, Brunet C, Dell’Anno A, Ianora A (2021) Metagenome-assembled genome (MAG) of Oceancaulis alexandrii NP7 isolated from Mediterranean Sea polluted marine sediments and its bioremediation potential. G3 (Bethesda) 11:210. https://doi.org/10.1093/g3journal/jkab210

    Article  Google Scholar 

  6. Guan F, Han Y, Yan K, Zhang Y, Zhang Z, Wu N, Tian J (2020) Highly efficient production of chitooligosaccharides by enzymes mined directly from the marine metagenome. Carbohydr Polym 234:115909. https://doi.org/10.1016/j.carbpol.2020.11590

    Article  CAS  PubMed  Google Scholar 

  7. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG, Yu VL (1993) Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31:3275–3283. https://doi.org/10.1128/jcm.31.12.3275-3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ et al (2020) Analysis of 1,000+ Type-Strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbial 11:468. https://doi.org/10.3389/fmicb.2020.00468

    Article  Google Scholar 

  9. Rai A, Jagadeshwari U, Gupta D, Smita N, Sasikala C, Ramana CV (2021) Phylotaxogenomics for the reappraisal of the genus Roseomonas with the creation of six new genera. Front Microbiol 12:1787. https://doi.org/10.3389/fmicb.2021.677842

    Article  Google Scholar 

  10. Oren A, Garrity GM (2022) Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005167

    Article  PubMed  Google Scholar 

  11. Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the central alps (Switzerland). Microb Ecol 58:292–306. https://doi.org/10.1007/s00248-008-9483-7

    Article  CAS  Google Scholar 

  12. Ramana ChV, Parag B, Girija KR, Ram BR, Ramana VV, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585. https://doi.org/10.1099/ijs.0.041442-0

    Article  CAS  PubMed  Google Scholar 

  13. Lakshmi KVNS, Sasikala Ch, Ashok KGV, Chandrasekaran R, Ramana CV (2011) Phaeovibrio sulfidiphilus gen. nov.sp. nov., phototrophic alphaproteobacterium isolated from brackish water. Int J Syst Evol Microbiol 61:828–832. https://doi.org/10.1099/ijs.0.018911-0

    Article  CAS  PubMed  Google Scholar 

  14. Gandham S, Lodha T, Sasikala Ch, Chintalapati VR (2018) Rhodobacter alkalitolerans sp. nov., isolated from an alkaline brown pond. Arch Microbiol 200:1487–1492. https://doi.org/10.1007/s00203-018-1561-8

    Article  CAS  PubMed  Google Scholar 

  15. Wu L, Ma J (2019) The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 69:895–898. https://doi.org/10.1099/ijsem.0.003276

    Article  CAS  PubMed  Google Scholar 

  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H et al (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985

    Article  PubMed  Google Scholar 

  21. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:281–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  Google Scholar 

  22. Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for 4specialized analyses of microbial genomes and metagenomes. Peer J Preprints 4:1

    Google Scholar 

  23. Auch AF, Jan M, Klenk H-P et al (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  25. Auch AF, Klenk HP, Göker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 28:142–148. https://doi.org/10.4056/sigs.541628

    Article  Google Scholar 

  26. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C et al (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:535–542. https://doi.org/10.1093/nar/gkw1017

    Article  CAS  Google Scholar 

  27. Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H et al (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:W52–W58. https://doi.org/10.1093/nar/gkz333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Divyasree B, Suresh G, Sasikala C, Ramana CV (2017) Chryseobacterium salipaludis sp. nov., isolated at a wild ass sanctuary. Int J Syst Evol Microbiol 68:542–546. https://doi.org/10.1099/ijsem.0.002536

    Article  CAS  PubMed  Google Scholar 

  29. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al (eds) Manual of Methods for General Microbiology. American Society of Microbiology, Washington, pp 409–443

    Google Scholar 

  30. Indu B, Kumar G, Smita N, Shabbir A, Sasikala Ch, Ramana ChV (2020) Chryseobacterium candidae sp. nov., isolated from a yeast (Candida tropicalis). Int J Syst Evol Microbiol 70:93–99. https://doi.org/10.1099/ijsem.0.003716

    Article  CAS  Google Scholar 

  31. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101. Newark, DE: MIDI Inc.

  32. Kates M (1986) Techniques of Lipidology. Isolation, analysis and identification of lipids. In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 3, part 2, 100–112. Edited by RH Burdon & PH van Knippenberg, Elsevier, Amsterdam

  33. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1016/j.bbamem.2016.08.010

    Article  CAS  Google Scholar 

  34. Kates M (1972) Techniques in Lipidology. In Laboratory Techniques in Biochemistry and Molecular Biology. American Elsevier Publishing Company 3:355–356

    Google Scholar 

  35. Xie C, Yokota A (2003) Phylogenetic analysis of Lampropedia hyaline based on the 16SrRNA gene sequence. J Gen Appl Microbiol 49:345–349

    Article  CAS  Google Scholar 

  36. Rosselló-Móra R, Amann R (2015) Past and future species definitions for bacteria and Archaea. Syst Appl Microbiol 38:209–212. https://doi.org/10.1016/j.syapm.2015.02.001

    Article  PubMed  Google Scholar 

  37. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Chang WC, Xiao Y, Liu HW, Liu P (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530. https://doi.org/10.1146/annurev-biochem-052010-100934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato T, Yoshida S, Hoshino H, Tanno M, Nakajima M, Hoshino T (2011) Sesquarterpenes (C35 terpenes) biosynthesized via the cyclization of a linear C35 isoprenoid by a tetraprenyl-β-curcumene synthase and a tetraprenyl-β-curcumene cyclase: identification of a new terpene cyclase. J Am Chem Soc 25:9734–9737. https://doi.org/10.1021/ja203779h

    Article  CAS  Google Scholar 

  41. Yang S, Tandon K, Lu C, Wada N, Shih CJ, Hsiao SS et al (2019) Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7:3. https://doi.org/10.1186/s40168-018-0616-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hutchings P (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  43. He D, Kim JK, Jiang XY, Park HY, Sun C, Yu HS et al (2014) Roseomonas sediminicola sp. nov., isolated from fresh water. Antonie Van Leeuwenhoek 105:191–197. https://doi.org/10.1007/s10482-013-0065-4

    Article  CAS  PubMed  Google Scholar 

  44. Kim DU, Ka JO (2014) Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64:1024–1029. https://doi.org/10.1099/ijs.0.053827-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Anusha thanks DST, Government of India for the award of INSPIRE Senior Research Fellowship. Ramana thanks the Department of Biotechnology, Government of India for the award of Tata Innovation Fellow. Financial support received from CSIR, IoE UoH and BUILDER UoH is acknowledged. Sasikala thanks UGC for the award of mid-career grant. The culture was initially isolated by Mr. B. Parag for which he is acknowledged. Infrastructural facilities funded by DST-FIST (UoH and JNTUH), UGC-SAP (DRS; UoH), TEQIP and AICTE (from JNTUH) are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AR, JU, DS designed the study under the supervision of SC and RCV. AR, SN, and IS performed isolation, deposition, and identification. AR, JU, and DS performed genomic analysis. AR and DS drafted the manuscript, SC and RCV reviewed and finalised MS. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sasikala Chintalapati or Venkata Ramana Chintalapati.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2359 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, A., Uppada, J., Gupta, D. et al. Neoroseomonas marina sp. nov., Isolated from a Beach Sand. Curr Microbiol 79, 233 (2022). https://doi.org/10.1007/s00284-022-02917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02917-2

Navigation