Skip to main content

Advertisement

Log in

Spatial Pattern of Endophytic Fungi and the Symbiotic Germination of Tulasnella Fungi from Wild Cymbidium goeringii (Orchidaceae) in China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The endophytic microbiome in orchid plants is rich and diverse; however, few studies have analyzed the endophytic microbiome of Cymbidium plants in different tissues and soils. This study implemented the Illumina Miseq technology to investigate the diversity of endophytic fungi in different tissues of wild Cymbidium goeringii. The results demonstrated that different tissue samples harbor a rich fungal endophytic community, and those fungi could be classified into 4 phyla, at least 145 families, and 185 genera. The endophytic fungal community diversity differed among the orchid tissues and soils, and some fungal taxa were clearly concentrated in certain orchid tissues, with more operational taxonomic units (OTUs) being detected. Investigation of mycorrhizal associations showed that 43 (about 3.8%) of the total 1137 OTUs could be assigned as Orchidaceae mycorrhizal fungi (OMF), while about 96.2% the OTUs were non-mycorrhizal fungi. Among the OMFs, OTUs of the ectomycorrhizal fungi Russulaceae and Thelephoraceae families were the most abundant, with different richness in the soil, followed by Tulasnellaceae and Ceratobasidiaceae, which were dominant in the root communities of C. goeringii. In the seeds, the absolutely dominant family was Nectriaceae, and the common OMFs Ceratobasidiaceae (five OTUs) and Tulasnellaceae (one OTU) were also detected in the seeds. Two Tulasnella spp. isolates from the roots of wild C. goeringii could effectively promote seed germination and rhizome formation of wild C. goeringii, and these strains might be particularly important in the practice of conservation for many endangered C. goeringii in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jin X, Li J, Ye D (2019) Atlas of native orchids in China. Henan Sci Technol, Zhengzhou.

  2. Chen S, Tis Z, Luo Y (1999) Native orchids of China in colour. Science Press, Beijing

    Google Scholar 

  3. Athipunyakom P, Manoch L, Piluek C (2004) Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Kasetsart J (Nat Sci) 38:216–228

    Google Scholar 

  4. Gui Y (2006) Study on endophytic fungi in Cymbidium goeringii from Guizhou of China. Dissertation, Guizhou University.

  5. Li L, Hu T, Tang Z, Zhuang C, Liu Z, Yang K, Peng Z (2008) rDNA ITS analysis of mycorrhizal fungi in Cymbidium plants. Scientia Silvae Sinicae 44(2):160–164

    CAS  Google Scholar 

  6. Luo Y (2019) Diversity and growth-promoting ability of endophytic fungi in Cymbidium faberi. Master degree thesis, Shanxi University of Technology.

  7. Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Q (2010) Study on isolation and identification of orchid mycorrhizal fungi and the symbiotic relationship between mycorrhizal fungi and Cymbidium. Master degree thesis, Hebei Agricultural University.

  9. Wu J, Ma H, Xu X, Qiao N, Guo S, Liu F, Zhang D, Zhou L (2013) Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii. Ann Bot 111:1181–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang H, Zi XM, Lin H et al (2018) Host-specificity of symbiotic mycorrhizal fungi for enhancing seed germination, protocorm formation and seedling development of over-collected medicinal orchid Dendrobium devonianum. J Microbiol 56(1):42–48

    Article  PubMed  Google Scholar 

  11. Luo YL, Deng BW, Liu JS, Bai QY, Jie XC, Zhang YW (2019) Diversity analysis of endophytic fungi isolated from Cymbidium faberi in Qin-Ba mountains of China. J Henan Agri Sci 48(5):113–121

    Google Scholar 

  12. Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20(7):459–471

    Article  PubMed  Google Scholar 

  13. Yu Y, Cui YH, Hsiang T, Zeng ZQ, Yu ZH (2015) Isolation and identification of endophytes from roots of Cymbidium goeringii and Cymbidium faberi (Orchidaceae). Nova Hedwigia 101(1–2):57–64

    Article  Google Scholar 

  14. Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T (2012) Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot 99(7):1158–1176

    Article  PubMed  Google Scholar 

  15. Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15

    Article  PubMed  Google Scholar 

  16. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Canadian J Bot 83:1–13

    Article  Google Scholar 

  17. Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In: Schulz BJE, Boyle C, Sieber TN (eds) Microbial root endophytes, p 156. Springer, Berlin

    Google Scholar 

  18. Chowdappa S, Jagannath S, Konappa N, Udayashankar AC, Jogaiah S (2020) Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules 10:1412

    Article  CAS  PubMed Central  Google Scholar 

  19. Jumpponen, A (2002) Non-mycorrhizal root endophytese aspects on their ecology. In 7th International mycological congress, Oslo, Norway, 57.

  20. Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6:50–64

    Article  Google Scholar 

  21. Li J, Wang R, Wang Z, Kuang P (2016) The phylogenetic relationship and non-specific symbiotic habit of mycorrhiza fungi from a terrestrial orchid (Cymbidium). Nordic J Bot 34:343–348

    Article  Google Scholar 

  22. Sun H (2009) The detection of function mechanism of endophytic fungi to Cymbidium goeringii. Dissertation, Southwest Forestry University.

  23. Zhang Q (2019) Study on the symbiotic development with endophytic fungi of Cymbidium tortisepalum var. longibracteatum. Dissertation, Southwest University of Science and Technology.

  24. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH (2016) Diversity, distribution and biotechnology potential of endophytic fungi. Ann Microbiol 66:529–542

    Article  CAS  Google Scholar 

  25. Pant B, Shah S, Shrestha R, Pandey S, Joshi PR (2017) An overview on orchid endophytes. In book: Mycorrhiza—Nutrient Uptake. Biocontrol Ecorestoration, pp 503–524.

  26. Fan L, Guo S, Cao W, Xiao P, Xu J (1996) Isolation, culture, identification and biological activity of Myceana orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycol Sin 15:251–255

    Google Scholar 

  27. Chen ST, Dai J, Song XW, Jiang XP, Zhao Q, Sun CB, Chen CW, Chen NF, Han BX (2020) Endophytic microbiota comparison of Dendrobium huoshanense root and stem in different growth years. Planta Med 86(13–14):967–975

    CAS  PubMed  Google Scholar 

  28. Liu X, Cui Y, Xu W, Cui Y (2013) Effect of fungal inductors on the proliferation and differentiation of C. goeringii rhizomes (in Chinese). Jiangsu Agri Sci 41(12): 45–47.

  29. Zhao XL, JiZ Y, Liu S, Chen CL, Zhu HY, Cao JX (2014) The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World J Microbiol Biotechnol 30(7):1993–2003

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Han S, Zhu Y, Lv M, Wang G, Guo W (2005) Ultra-structure of symbiosis mycorrhizal between Cymbidium goeringii and Rhizoctonia sp. J Nanjing Forestry Univ (Nat Sci Edition) 29(4):105–108

    Google Scholar 

  31. Gui Y (2006) Studies on endophytic fungi of Cymbidium goeringii from Guizhou. Dissertation, Guizhou University.

  32. Sheng CL, Lee YI, Gao JY (2012) Ex situ symbiotic seed germination, isolation and identification of effective symbiotic fungus in Cymbidium mannii (Orchidaceae). Chin J Plant Ecol 36(8):859–869

    Article  Google Scholar 

  33. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. bioRxiv274100.

  35. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  36. Caporaso GJ, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  38. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  39. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    Article  CAS  Google Scholar 

  40. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Andersen GL (2006) Greengenes: a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kolde R, Kolde MR (2015) Package ‘pheatmap’. R Package, 1.

  43. Wang T, Chi M, Guo L, Liu D, Yang Y, Zhang Y (2021) The diversity of root-associated endophytic fungi from four epiphytic orchids in China. Diversity 13:197

    Article  CAS  Google Scholar 

  44. Xu L, Tian JN, Wang T, Li LB (2017) Symbiosis established between orchid and Tulasnella spp. fungi. J Nucl Agric Sci 31:876–883

    Google Scholar 

  45. Dearnaley JDW, Martos F, Selosse MA (2012) 12 Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In Fungal Associations; Springer Science and Business Media LLC: Berlin, pp 207–230.

  46. Hu K, Hou X, Guo S (2010) Distribution of endophytic fungi in Dendrobium officinale. Microbiol China 37(1):37–42

    CAS  Google Scholar 

  47. Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90(8):1168–1179

    Article  CAS  PubMed  Google Scholar 

  48. Xu LL, Zhang Y, Xu J (2019) Tulasnellaceae associated with orchids: taxonomy, diversity, specificity and plasticity. Mycosystema 38(3):291–312

    Google Scholar 

  49. Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M (2016) Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol 213(3):1428–1439

    Article  PubMed  Google Scholar 

  50. Waud M, Busschaert P, Lievens B, Jacquemyn H (2016) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165

    Article  Google Scholar 

  51. Jacquemyn H, Waud M, Merckx VS, Lievens B, Brys R (2015) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:3269–3280

    Article  PubMed  Google Scholar 

  52. Kaur J, Phillips C, Sharma J (2021) Host population size is linked to orchid mycorrhizal fungal communities in roots and soil, which are shaped by microenvironment. Mycorrhiza 31(1):3

    Article  Google Scholar 

  53. Johnson TR, Stewart SL, Dutra D, Kane ME, Richardson L (2007) Asymbiotic and symbiotic seed germination of Eulophia alta (Orchidaceae)-preliminary evidence for the symbiotic culture advantage. Plant Cell Tissue Org Cult 90:313–323

    Article  Google Scholar 

  54. Ovando I, Damon A, Bello R, Ambrosio D, Albores V, Adriano L, Salvador M (2005) Isolation of endophytic fungi and their potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassavola nodosa. Asian J Plant Sci 4:309–315

    Article  Google Scholar 

  55. Jiang JW, Zhang K, Cheng S, Nie QW, Zhou SX, Chen QQ, Zhou JL, Zhen X, Li XT, Zhen TW, Xu CMY, Hsiang T, Sun ZX, Zhou Y (2019) Fusarium oxysporum KB-3 from Bletilla striata: an orchid mycorrhizal fungus. Mycorrhiza 29:531–540

    Article  PubMed  Google Scholar 

  56. Vujanovic V, Starnaud M, Barabe D, Thibeault G (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86

    Article  Google Scholar 

  57. Hou TW, Jin H, Liu HX, Luo YB (2010) Mycorrhizal specificity of Doritis pulcherrima in in-vitro research. Chinese J Plant Ecol 34(12):1433–1438

    Google Scholar 

  58. Lu M (2018) Endophytes isolated from Dendrobium seeds and their effects on growth and high temperature resistance of Dendrobium seedlings. Master Dissertation of Southwest University.

  59. Meng Y, Shao SC, Liu SJ, Gao JY (2019) Do the fungi associated with roots of adult plants support seed germination? A case study on Dendrobium exile (Orchidaceae). Glob Ecol Conserv 17:e00582

    Article  Google Scholar 

Download references

Funding

This work was funded by grants from the Beijing Municipal Administration Center of Parks (No. ZX2020006) and National Natural Science Foundation of China (No. 31800523).

Author information

Authors and Affiliations

Authors

Contributions

TW performed the experiments, analyzed the data, and wrote the manuscript; XW, YG, and XC performed the fungi isolation and seed germination experiments; YG and HL prepared the plant materials; ZL reviewed and supervised the research. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhenhua Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1 The sob index curve of the sequencing data. Supplementary file1 (PNG 11068 kb)

284_2022_2826_MOESM2_ESM.png

Fig. S2 Fungal colonies and mycelium structures observed under a light microscope after 10 days of culture on Potato Dextrose Agar (PDA) medium. Supplementary file2 (PNG 32 kb)

Fig. S3 Multiple sequence alignment of Tulasnella sp. strains ITSs by CLUSTAL. Supplementary file3 (DOCX 12 kb)

Supplementary file4 (XLSX 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, X., Gang, Y. et al. Spatial Pattern of Endophytic Fungi and the Symbiotic Germination of Tulasnella Fungi from Wild Cymbidium goeringii (Orchidaceae) in China. Curr Microbiol 79, 139 (2022). https://doi.org/10.1007/s00284-022-02826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02826-4

Navigation