Skip to main content
Log in

Green Fluorescent Protein-Tagged Bacillus axarquiensis TUBP1 Reduced Cotton Verticillium Wilt Incidence by Altering Soil Rhizosphere Microbial Communities

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Verticillium wilt is a major disease of cotton that considerably decreases yield and crop quality. Soil microbial communities play an important role in plant health. Therefore, biocontrol bacteria that regulate microbial communities in rhizosphere soil can improve plant resistance to pathogens. Previously, the antagonistic strain Bacillus axarquiensis TUBP1 was screened and found to act against Verticillium dahliae with 43% biocontrol effect in cotton fields. We studied the effect of Bacillus axarquiensis TUBP1 with a green fluorescent protein (GFP) gene marker on the microbial community structure of cotton rhizosphere soil and cotton yield and quality. Cotton Verticillium wilt incidence, soil biochemical properties, and soil bacterial and fungal communities were analyzed. Results showed that bacterial and fungal abundance in cotton rhizosphere soil was temporarily changed after applying B. axarquiensis TUBP-315GFP. However, Bacillus significantly increased, whereas V. dahliae significantly decreased. The incidence of cotton Verticillium wilt after treatment with B. axarquiensis TUBP-315GFP was significantly lower and cotton production increased by 40.6%. Our findings indicated that the application of B. axarquiensis TUBP-315GFP can change microbial community structure of cotton rhizosphere soil, leading to a reduction in the incidence of cotton Verticillium wilt and increasing cotton yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49:295–303. https://doi.org/10.1007/s00374-012-0718-x

    Article  Google Scholar 

  2. Zhang J, Hu HL, Wang XN, Yang YH, Zhang CJ, Zhu HQ, Shi L, Tang CM, Zhao MW (2020) Dynamic infection of Verticillium dahliae in upland cotton. Plant Biol (Stuttg) 22:90–105. https://doi.org/10.1111/plb.13037

    Article  CAS  Google Scholar 

  3. Yao ZS, Chen ZY, Zheng XB, Zhang J, Huang DF (2003) Genetically marking of natural biocontrol bacterium Bacillus subtilis strains with green fluorescent protein gene. Sheng Wu Gong Cheng Xue Bao 19:551–555. https://doi.org/10.1016/j.apsoil.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  4. Shi YW, Li C, Yang HM, Zhang T, Gao Y, Chu M, Zeng J, Lin Q, OuTiKuEr LYG, Huo XD, Lou K (2017) Colonization study of gfp- tagged Achromobacter marplatensis strain in sugar beet. J Microbiol 55:267–272. https://doi.org/10.1007/s12275-017-6371-1

    Article  CAS  PubMed  Google Scholar 

  5. Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis n11. Plant Soil 344:87–97. https://doi.org/10.1007/s11104-011-0729-7

    Article  CAS  Google Scholar 

  6. Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2017) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ 5:e3107. https://doi.org/10.7717/peerj.3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong LL, Xu J, Zhang LJ, Cheng RY, Wei GF, Wei GF, Su H, Yang J, Qian J, Xu R, Chen SL (2018) Rhizospheric microbial communities are driven by Panax ginseng at different growth stages and biocontrol bacteria alleviates replanting mortality. Acta pharmaceutica sinica B 8:272–282. https://doi.org/10.1016/j.apsb.2017.12.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zeng H, Ding HP, Tian J, Zhang LL (2018) Pore- forming mechanism of TUBP1 protein act on verticillium dahliae. Process Biochem 73:6–14. https://doi.org/10.1016/j.procbio.2018.07.024

    Article  CAS  Google Scholar 

  9. Zeng H, Li T, Tian J, Zhang LL (2018) TUBP1 protein lead to mitochondria-mediated apoptotic cell death in Verticillium dahliae. Int J Biochem Cell Biol 103:35–44. https://doi.org/10.1016/j.biocel.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Wang B, Wan CX, Zeng H (2020) Colonization on cotton plants with a GFP labeled strain of Bacillus axarquiensis. Curr Microbiol 77:3085–3094. https://doi.org/10.1007/s00284-020-02071-7

    Article  CAS  PubMed  Google Scholar 

  11. Yanu P, Jakmunee J (2015) Flow injection with in- line reduction column and conductometric detection for determination of total inorganic nitrogen in soil. Talanta 144:263–267. https://doi.org/10.1016/j.talanta.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Chen ZH, Zhang YL, Jia YH, Chen LJ, Liu XB, Wu ZJ (2011) Degradation characteristics of transgenic cotton residues in soil by Fourier transform infrared spectroscopy. Spectrosc Spectr Anal 31:77–81. https://doi.org/10.3964/j.issn.1000-0593(2011)01-0077-05

    Article  CAS  Google Scholar 

  13. Jiao SY, Li JR, Li YQ, Jia JW, Xu ZY (2019) Soil C, N, and P distribution as affected by plant communities in the Yellow River Delta, China. PLoS ONE 14:e0226887. https://doi.org/10.1371/journal.pone.0226887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu YB, Zhao LN, Wang ZR (2018) Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger desert. Soil Biol Biochem 126:40–48. https://doi.org/10.1007/s00438-017-1347-8

    Article  CAS  Google Scholar 

  15. Li Y, Fang F, Wei J, Wu X, Tan D (2019) Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Sci Rep 9:12014. https://doi.org/10.1038/s41598-019-48620-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JM, Roh AS, Choi SC, Choi EJ, Ahn MT, Kim BK, Lee SK (2016) Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol 54:838–845. https://doi.org/10.1007/s12275-016-6526-5

    Article  CAS  PubMed  Google Scholar 

  17. Liu GM, Yang JS, Yao RJ (2006) Electrical conductivity in soil extracts: chemical factors and their intensity. Pedosphere 16:100–107. https://doi.org/10.1016/s1002-0160(06)60031-3

    Article  CAS  Google Scholar 

  18. Higahara H, Matsubara M, Nakai M, Okunuki K (1986) Crytalline bacterial proteinase from Bacillus subtilis. Biochem 45:189–194

    Google Scholar 

  19. Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analyses, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 903–947

    Google Scholar 

  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 3:14–26. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  21. Sinsabaugh RL, Lauber MN, Ahmed B, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245

    Article  PubMed  Google Scholar 

  22. Beers RF, Sizer TW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140. https://doi.org/10.1016/S0074-7696(08)60016-9

    Article  CAS  PubMed  Google Scholar 

  23. Zhang YG, Li DQ, Wang HM, Xiao QM (2005) Extraction method of soil microbial DNA for molecular ecology study. Ying Yong Sheng Tai Xue Bao 16:956–960

    CAS  PubMed  Google Scholar 

  24. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web- based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van HD, Weber CF (2009) Introducing mothur: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Xu H, Song L, Bai CX, Sun YY, Tian XQ, Bai CX, Li YH, Jiang Y, Ge J, Wang XL, Wen HY (2020) Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun 11:3218. https://doi.org/10.1038/s41467-020-16990-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu XY, Teng ZH, Wang JX, Wu TT, Zhang ZQ, Deng XP, Fang XM, Tan ZY, Ali I, Liu DX, Zhang J, Liu DJ, Liu F, Zhang ZS (2017) Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 292:1281–1306. https://doi.org/10.1007/s00438-017-1347-8

    Article  CAS  PubMed  Google Scholar 

  30. Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9:2213. https://doi.org/10.3389/fmicb.2018.02213

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wei Z, Yang XM, Yin SX, Shen Q, Ran W, Xu YC (2011) Efficacy of Bacillus- fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159. https://doi.org/10.1016/j.apsoil.2011.03.013

    Article  Google Scholar 

  32. Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotech Lett 26:487–491. https://doi.org/10.1023/B:BILE.0000019555.87121.34

    Article  CAS  Google Scholar 

  33. Yuan S, Wang L, Wu K, Shi J, Wang M, Yang X (2014) Evaluation of Bacillus- fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Appl Soil Ecol 75:86–94. https://doi.org/10.1016/j.apsoil.2013.11.004

    Article  Google Scholar 

  34. D’Hose T, Cougnon M, De Vliegher A, Vandecasteele B, Viaene N, Cornelis W, Reheul D (2014) The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl Soil Ecol 75:189–198. https://doi.org/10.1016/j.apsoil.2013.11.013

    Article  Google Scholar 

  35. Sui J, Ji C, Wang X, Liu Z, Sa R, Hu Y, Wang C, Li Q, Liu X (2019) A plant growth-promoting bacterium alters the microbial community of continuous cropping poplar trees’ rhizosphere. J Appl Microbiol 126:1209–1220. https://doi.org/10.1111/jam.14194

    Article  CAS  PubMed  Google Scholar 

  36. Winding A, Binnerup SJ, Pritchard H (2004) Non- target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141. https://doi.org/10.1016/S0168-6496(03)00261-7

    Article  CAS  PubMed  Google Scholar 

  37. Prévost K, Couture G, Shipley B, Brzezinski R, Beaulieu C (2006) Effect of chitosan and a biocontrol streptomycete on field and potato tuber bacterial communities. Biocontrol 51:533–546. https://doi.org/10.1007/s10526-005-4240-z

    Article  CAS  Google Scholar 

  38. Savazzini F, Longa CMO, Pertot I, Gessler C (2008) Real- time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. J Microbiol Methods 73:185–194. https://doi.org/10.1016/j.mimet.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  39. Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R, Grosch R (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8:e68818. https://doi.org/10.1371/journal.pone.0068818

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kröber M, Wibberg D, Grosch R, Eikmeyer F, Verwaaijen B, Chowdhury SP, Schlüter A (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252. https://doi.org/10.3389/fmicb.2014.00252

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hartman K, Tringe SG (2019) Interactions between plants and soil shaping the root microbiome under abiotic stress. Portland Press Open Acces 476:2705–2724. https://doi.org/10.1042/BCJ20180615

    Article  CAS  Google Scholar 

  42. Daniel BM, Vogel C, Bai Y, Julia AV (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234. https://doi.org/10.1146/annurev-genet-120215-034952

    Article  CAS  Google Scholar 

  43. Akifumi S, Yoshikatsu U, Takahiro Z, Hisabumi T, Kazufumi Y (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS ONE 9:e100709. https://doi.org/10.1371/journal.pone.0100709

    Article  CAS  Google Scholar 

  44. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. https://doi.org/10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  45. Zouari I, Jlaiel L, Tounsi S, Trigui M (2015) Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biol Control 2016:54–62. https://doi.org/10.1016/j.biocontrol.2016.05.012

    Article  CAS  Google Scholar 

  46. Huang HC, Qiu JP (2005) Research advance in controlling plant diseases by Bacillus subtilis. J Zhejing Agric Sci. https://doi.org/10.3969/j.issn.0528-9017.2005.03.022

    Article  Google Scholar 

Download references

Funding

Our research was supported by the National Science Foundation (31260013), Regional project of Xinjiang Production and Construction Corps (2018BB044), and Microbial Resources Utilization Innovation Team in Key Field of Tarim University (TDZKCQ202001).

Author information

Authors and Affiliations

Authors

Contributions

CG and BW contributed to performing the experiments and writing the initial draft; HZ and G-cM contributed to the guidance of experimental operations; HZ contributed to financial support for this work.

Corresponding author

Correspondence to Hong Zeng.

Ethics declarations

Conflict of interest

All authors declare that they have no conficts of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Wang, B., Ma, Gc. et al. Green Fluorescent Protein-Tagged Bacillus axarquiensis TUBP1 Reduced Cotton Verticillium Wilt Incidence by Altering Soil Rhizosphere Microbial Communities. Curr Microbiol 78, 3562–3576 (2021). https://doi.org/10.1007/s00284-021-02618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02618-2

Navigation