Skip to main content
Log in

Lincomycin-Induced Secondary Metabolism in Streptomyces lividans 66 with a Mutation in the Gene Encoding the RNA Polymerase Beta Subunit

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Activating the genetic potential of Streptomyces strains to produce secondary metabolites can improve the production of useful biologically active compounds and facilitate the discovery of novel biologically active compounds. In this study, we found that Streptomyces lividans carrying the R440H mutation in rpoB, encoding the RNA polymerase beta subunit, grown in the presence of lincomycin at concentrations below the minimum inhibitory concentration (MIC) produced abundant amounts of actinorhodin and certain cryptic secondary metabolites despite culture conditions that restrict their production by the wild-type strain. The results indicate that lincomycin at concentrations below the MIC may strongly potentiate secondary metabolite production by Streptomyces strains carrying a specific rpoB mutation. In this study, we report an interesting phenomenon induced by combining the positive effects of certain rpoB mutations and concentration-dependent responses to lincomycin on secondary metabolism in S. lividans 66 and discuss the mechanisms and their applicability in exploring cryptic secondary metabolite production in streptomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. The John Innes Foundation, Norwich

    Google Scholar 

  2. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH (2018) Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02221

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bentley S, Chater K, Cerdeño-Tárraga AM, Challis G, Thomson N, James K, Harris D, Quail M, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen C, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell B, Parkhill J, Hopwood D (2002) Completegenome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  Google Scholar 

  4. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  Google Scholar 

  5. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  Google Scholar 

  6. Ward AC, Nee Allenby (2018) Genome mining for the search and discovery of bioactive compounds: the Streptomyces paradigm. FEMS Microbiol Lett. https://doi.org/10.1093/fensle/fny240

    Article  PubMed  Google Scholar 

  7. Baltz RH (2016) Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 42:343–370

    Article  CAS  Google Scholar 

  8. Onaka H (2017) Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiotechnol 70:865–870

    Article  CAS  Google Scholar 

  9. Tomm HA, Ucciferri L, Ross AC (2019) Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J Ind Microbiol Biotechnol 46:1381–1400

    Article  CAS  Google Scholar 

  10. Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K (2004) Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56:155–184

    Article  CAS  Google Scholar 

  11. Hosaka T, Ohnishi-Kameyama M, Muramatsu H, Murakami K, Tsurumi Y, Kodani S, Yoshida M, Fujie A, Ochi K (2009) Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27:462–464

    Article  CAS  Google Scholar 

  12. Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97:87–98

    Article  CAS  Google Scholar 

  13. Imai Y, Sato S, Tanaka Y, Ochi K, Hosaka T (2015) Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl Environ Microbiol 81:3869–3879

    Article  CAS  Google Scholar 

  14. Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T (2018) A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3 (2). Antonie Van Leeuwenhoek 111:705–716

    Article  CAS  Google Scholar 

  15. Hoshino K, Imai Y, Mukai K, Hamauzu R, Ochi K, Hosaka T (2020) A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance. Appl Microbiol Biotechnol 104:2193–2203

    Article  CAS  Google Scholar 

  16. Mak S, Nodwell JR (2017) Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Mol Microbiol 106:597–613

    Article  CAS  Google Scholar 

  17. Lin L, Pan J, Wang Z, Yan X, Yang D, Zhu X, Shen B, Duan Y, Huang Y (2018) Ribosome engineering and fermentation optimization leads to overproduction of tiancimycin A, a new enediyne natural product from Streptomyces sp. CB03234. J Ind Microbiol Biotechnol 45:141–151

    Article  CAS  Google Scholar 

  18. Kaweewan I, Komaki H, Hemmi H, Hoshino K, Hosaka T, Isokawa G, Oyoshi T, Kodani S (2019) Isolation and structure determination of a new cytotoxic peptide curacozole from Streptomyces curacoi based on genome mining. J Antibiot 72:1–7

    Article  CAS  Google Scholar 

  19. Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184:3984–3991

    Article  CAS  Google Scholar 

  20. Lai C, Xu J, Tozawa Y, Okamoto-Hosoya Y, Yao X, Ochi K (2002) Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology 148:3365–3373

    Article  CAS  Google Scholar 

  21. Xu J, Tozawa Y, Lai C, Hayashi H, Ochi K (2002) A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2). Mol Genet Genomics 268:179–189

    Article  CAS  Google Scholar 

  22. Baltz RH (2014) Spontaneous and induced mutations to rifampicin, streptomycin and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiotechnol 67:619–624

    Article  CAS  Google Scholar 

  23. Ma Z, Luo S, Xu X, Bechthold A, Yu X (2016) Characterization of representative rpoB gene mutations leading to a significant change in toyocamycin production of Streptomyces diastatochromogenes 1628. J Ind Microbiol Biotechnol 43:463–471

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Funding Information

This work was financially supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (Grant No. 18K05410) to T. H.

Author information

Authors and Affiliations

Authors

Contributions

KM, MK, DH and TH designed research; KM, MK, KH, RH and TH performed research; KM, MK, and TH analyzed data: KM, TM and TH wrote the paper.

Corresponding author

Correspondence to Takeshi Hosaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukai, K., Kobayashi, M., Hoshino, K. et al. Lincomycin-Induced Secondary Metabolism in Streptomyces lividans 66 with a Mutation in the Gene Encoding the RNA Polymerase Beta Subunit. Curr Microbiol 77, 2933–2939 (2020). https://doi.org/10.1007/s00284-020-02126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02126-9

Navigation