Skip to main content

Advertisement

Log in

In Vitro Detoxification Studies of p-Cresol by Intestinal Bacteria Isolated from Human Feces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

p-Cresol is a neurotoxic and nephrotoxic carcinogenic aromatic substance produced as a result of microbial fermentation in the intestine. The derivatives of p-cresol (p-cresyl sulphate or p-cresyl glucuronide) have a deleterious effect on renal failure patients undergoing hemodialysis. Human gut seems to be inhabited with a diverse microbial population capable of detoxifying many aromatic compounds. However, the knowledge on the role of gut microbes in metabolizing p-cresol is limited. Hence, the present study aims to investigate p-cresol detoxification by intestinal bacteria isolated from human feces. Three potential p-cresol tolerant isolates were selected and identified as Enterococcus faecalis strains (UTD-1, UTD-2 and UTD-3) by 16SrRNA gene sequencing. All three E. faecalis isolates decreased the p-cresol concentration (30 µg/ml) at a higher rate with extracellular extracts (2.58–9.53 µg/ml) as compared to intracellular (0.55–5.28 µg/ml) extract. These three potential isolates also exhibited tolerance to gastrointestinal conditions for up to 60 min. Added to its potential, the expression of virulent genes (esp, gelE, and cyl) was found to be suppressed when subjected to bile stress under in vitro conditions. HPLC analysis displayed transformed products from extracellular extract treated samples were comparable to the metabolite standard of the p-cresol degradation pathway. Infrared spectral analysis too showed the spectrum similarity with metabolite standard. Thus, conclusively, intestinal isolates E. faecalis (UTD-1, UTD-2 and UTD-3) might be a promising candidate for mitigating p-cresol detoxification in uremic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evenepoel P, Meijers BK, Bammens BR, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int 76:12–19

    Google Scholar 

  2. Persico AM, Napolioni V (2013) Urinary p-cresol in autism spectrum disorder. Neurotoxic Teratol 36:82–90

    CAS  Google Scholar 

  3. Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B (2016) Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin J Am Soc Nephrol 11:1136–1144

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Poesen R, Meijers B, Evenepoel P (2013) The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 26:323–332

    PubMed  Google Scholar 

  5. Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25:657–670

    PubMed  CAS  Google Scholar 

  6. Koppe L, Mafra D, Fouque D (2015) Probiotics and chronic kidney disease. Kidney Int 88:958–966

    PubMed  CAS  Google Scholar 

  7. Lee CT, Kuo CC, Chen YM, Hsu CY, Lee WC, Tsai YC, Ng HY, Kuo LC, Chiou TT, Yang YK, Cheng BC, Chen JB (2010) Factors associated with blood concentrations of indoxyl sulfate and p-cresol in patients undergoing peritoneal dialysis. Perit Dial Int 30:456–463

    PubMed  Google Scholar 

  8. Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X, Yamada K, Yin Y, Tome D, Carrasco-Pozo C, Gotteland M, Kong X, Blachier F (2015) The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med 85:219–227

    PubMed  CAS  Google Scholar 

  9. Brocca A, Virzi GM, de Cal M, Cantaluppi V, Ronco C (2013) Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purif 36:219–225

    PubMed  Google Scholar 

  10. Chang MC, Chang HH, Chan CP, Yeung SY, Hsien HC, Lin BR, Yeh CY, Tseng WY, Tseng SK, Jeng JH (2014) P-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS ONE 9:e114446

    PubMed  PubMed Central  Google Scholar 

  11. Kamijo Y, Soma K, Kokuto M, Ohbu M, Fuke C, Ohwada T (2003) Hepatocellular injury with hyper amino transferasemia after cresol ingestion. Arch Pathol Lab Med 127:364–366

    PubMed  Google Scholar 

  12. Yamamoto S, Kazama JJ, Omori K, Matsuo K, Takahashi Y, Kawamura K, Matsuto T, Watanabe H, Maruyama T, Narita I (2015) Continuous reduction of protein-bound uraemic toxins with improved oxidative stress by using the oral charcoal adsorbent AST-120 in haemodialysis patients. Sci Rep 5:14381

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Guida B, Germano R, Trio R, Russo D, Memoli B, Grumetto L, Barbato F, Cataldi M (2014) Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis 24:1043–1049

    PubMed  CAS  Google Scholar 

  14. Tingirikari JMR (2019) In-vitro prebiotic analysis of microbiota accessible pectic polysaccharides. Curr Microbiol 76:1452–1460

    PubMed  CAS  Google Scholar 

  15. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9:1603–1610

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Tingirikari JMR (2018) Microbiota-accessible pectic poly-and oligosaccharides in gut health. Food Funct 9:5059–5073

    PubMed  CAS  Google Scholar 

  17. Nowak A, Kuberski S, Libudzisz Z (2014) Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Food Addit Contam Part A 31:1678–1687

    CAS  Google Scholar 

  18. Nowak A, Arabski M, Libudzisz Z (2008) Ability of intestinal lactic bacteria to bind or/and metabolize indole. Food Technol Biotech 46:299–304

    CAS  Google Scholar 

  19. Fang CY, Lu JR, Chen BJ, Wu C, Chen YP, Chen MJ (2014) Selection of uremic toxin-reducing probiotic in vitro and in vivo. J funct foods 7:407–415

    CAS  Google Scholar 

  20. Vanhaecke L, Vercruysse F, Boon N, Verstraete W, Cleenwerck I, De Wachter M, De Vos P, Van de Wiele T (2008) Isolation and characterization of human intestinal bacteria capable of transforming the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine. Appl Environ Microbiol 74:1469–1477

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Nowak A, Libudzisz Z (2007) Ability of intestinal lactic bacteria to bind or/and metabolise phenol and p-cresol. Ann Microbiol 57:329–335

    CAS  Google Scholar 

  22. Passmore IJ, Letertre MP, Bianconi Preston MD et al (2018) Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog 14:e1007191

    PubMed  PubMed Central  Google Scholar 

  23. Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33:2127–2133

    PubMed  CAS  Google Scholar 

  24. Shah AA, Nawaz A, Kanwal L, Hasan F, Khan S, Badshah M (2015) Degradation of poly (ɛ-caprolactone) by a thermophilic bacterium Ralstonia sp. Strain MRL-TL isolated from hot spring. Int Biodeter Biodeg 98:35–42

    CAS  Google Scholar 

  25. Sathyabama S, Vijayabharathi R, Bruntha Devi P, Ranjith Kumar M, Priyadarisini VB (2012) Screening for probiotic properties of strains isolated from feces of various human groups. J Microbiol 50:603–612

    PubMed  Google Scholar 

  26. Villa-Rodriguez E, Ibarra-Gamez C, de Los Santos-Villalobos S (2018) Extraction of high-quality RNA from Bacillus subtilis with a lysozyme pre-treatment followed by the Trizol method. J Microbiol Methods 147:14–16

    PubMed  CAS  Google Scholar 

  27. Pfaffl MW, Hageleit M (2001) Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol Lett 23:275–282

    CAS  Google Scholar 

  28. Sachan P, Madan S, Hussain A (2019) Isolation and screening of phenol-degrading bacteria from pulp and paper mill effluent. Appl Water Sci 9:100

    Google Scholar 

  29. Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S (2016) Characterization of a unique pathway for 4- cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum. J Biol Chem 291:6583–6594

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Tallur PN, Megadi VB, Kamanavalli CM, Ninnekar HZ (2006) Biodegradation of p-cresol by Bacillus sp. strain PHN 1. Curr Microbiol 53:529–533

    PubMed  CAS  Google Scholar 

  31. Saito Y, Sato T, Nomoto K, Tsuji H (2018) Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol Ecol 94:125

    Google Scholar 

  32. Nowak A, Libudzisz Z (2006) Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe 12:80–84

    PubMed  CAS  Google Scholar 

  33. Al Hinai EA, Kullamethee P, Rowland IR, Swann J, Walton GW, Commane DM (2019) Modelling the role of microbial p-cresol in colorectal genotoxicity. Gut Microbes 10:398–411

    PubMed  CAS  Google Scholar 

  34. Salmean YA, Segal MS, Palii SP, Dahl WJ (2015) Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J Ren Nutr 25:316–320

    PubMed  CAS  Google Scholar 

  35. Spanogiannopoulos P, Bess EN, Carmody RN, Tumbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 14:273–287

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Tingirikari JMR, Sarathy MV, Karthigarani AK (2019) Impact of probiotics in human health and disease treatment. In: Keservani RK, Sharma AK, Kesharwani RK (eds) Nutraceutical and functional foods in disease prevention. IGI Global, Pennsylvania, pp 35–67

    Google Scholar 

  37. Topcu A, Bulat T, Wishah R, Boyaci IH (2010) Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int J Food Microbiol 139:202–205

    PubMed  CAS  Google Scholar 

  38. Terada A, Bukawa W, Kan T, Mitsuoka T (2004) Effects of the consumption of heat-killed Enterococcus faecalis EC-12 preparation on microbiota and metabolic activity of the faeces in healthy adults. Microb Ecol Health Dis 16:188–194

    Google Scholar 

  39. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tome D (2013) Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 69:114–126

    PubMed  Google Scholar 

  40. Yang CF, Lee CM (2007) Enrichment, isolation and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. Int Biodeter Biodeg 59:206–210

    CAS  Google Scholar 

  41. Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol 145:390–394

    PubMed  CAS  Google Scholar 

  42. Mishra AK, Ghosh AR (2018) Characterisation of functional, Safety and Probiotic properties of Enterococcus faecalis AG5 isolated from wistar rat, demonstrating adherence to HCT 116 cells and gastrointestinal survivability. Probiotic Antimicrob Proteins 10:435–445

    CAS  Google Scholar 

  43. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185

    PubMed  CAS  Google Scholar 

  44. Christoffersen TE, Jensen H, Kleiveland CR, Dorum G, Jacobsen M, Lea T (2012) In vitro comparison of commensal, probiotic and pathogenic strains of Enterococcus faecalis. Br J Nutr 108:2043–2053

    PubMed  CAS  Google Scholar 

  45. Sarathy MV, Balaji S, Jagan Mohan Rao T (2020) Enterococcal infections and drug resistance mechanism. In: Siddhardha B, Dyavaiah M, Syed A (eds) Model organisms for microbial pathogenesis, biofilm formation and antimicrobial drug discovery. Springer, Singapore, pp 131–158

    Google Scholar 

  46. Hofmann AF (1989) Enterohepatic circulation of bile acids. In: Schultz SG, Forte JG, Rauner BB (eds) Handbook of physiology. Section 6: the gastrointestinal system, salivary, gastric, pancreatic, and hepatobiliary secretion, Am Physiol Soc, Bethesda, pp 567–596

  47. Mubarak Z, Soraya C (2018) The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. Research 7:287

    Google Scholar 

  48. Zhang X, Bierschenk D, Top J, Anastasiou I, Bonten MJ, Willems RJ, Van Schaik W (2013) Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC genomics 14:299

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Batchelor HK, Marriott JF (2015) Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 79:395–404

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Hwang IY, Lim SK, Ku HO, Park CK, Jung SC, Park YH, Nam HM (2011) Occurrence of virulence determinants in fecal Enterococcus faecalis isolated from pigs and chickens in Korea. J Microbiol Biotechnol 21:1352–1355

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

All the authors gratefully acknowledge to DST-PURSE PHASE-II Programme, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan Brindha Priyadarisini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 603 kb)

Supplementary material 2 (PDF 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayasarathy, M., Kiran, G.K., Balaji, S. et al. In Vitro Detoxification Studies of p-Cresol by Intestinal Bacteria Isolated from Human Feces. Curr Microbiol 77, 3000–3012 (2020). https://doi.org/10.1007/s00284-020-02124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02124-x

Navigation