Skip to main content
Log in

Studies on Degradation of 7-ketocholesterol by Environmental Bacterial Isolates

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Medical bioremediation is a unique strategy of targeting pathogenic compounds with an exogenous enzyme of microbial origin. The objective of this study was to isolate and screen the microorganisms from diverse environmental samples for their ability to catabolize 7-ketocholesterol. Isolation of bacterial strains was performed and molecular identification was carried out by amplification and sequencing of 16S rDNA for 4 the best degrader isolates. Degradation was confirmed on the basis of UV spectrophotometric and HPLC analysis. Four bacterial isolates, showing high catabolic activity towards 7-ketocholesterol were isolated: Alcanivorax jadensis IP4 (accession number KP309836; sea water sediment), Streptomyces auratus IP2 (accession number KP309837; soil), Serratia marcescens IP3 (accession number KP309838; soil) and Thermobifida fusca IP1 (accession number KM677184; manure piles). All the isolates were capable of utilizing 7-ketocholesterol as the sole organic substrate, resulting in its mineralisation. The most rapid degradation was observed with A. jadensis IP4 followed by T. fusca IP1. The degradation was followed and analyzed by HPLC. A. jadensis IP4 removed 7-ketocholesterol below detection levels within 8 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krause, M.R. and Regen, S.L., Accounts Chem. Res., 2014, vol. 47, no. 12, pp. 3512–3521.

    Article  CAS  Google Scholar 

  2. Brown, A.J., Ikonen, E., and Olkkonen, V.M. Curr. Opin. Lipidol., 2014, vol. 25, pp. 133–139.

    Article  PubMed  CAS  Google Scholar 

  3. Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects, Grandgirard, A., Guardiola, F., Dutta, P., Codony, R., and Savage, G., Eds., Champaign, IL: AOCS Press, 2002.

    Google Scholar 

  4. Colles, S.M., Maxson, J.M., Carlson, S.G., and Chisolm, G.M., Trends Cardiovasc. Med., 2001, vol. 11, pp. 131–138.

    Article  PubMed  CAS  Google Scholar 

  5. Björkhem, I., Heverin, M., Leoni, V., Meaney, S., and Diczfalusy, U., Acta Neurol. Scand., 2006, vol. 114, pp. 43–49.

    Article  Google Scholar 

  6. Vaya, J. and Schipper, H.M., J. Neurochem., 2007, vol. 102, pp. 1727–1737.

    Article  PubMed  CAS  Google Scholar 

  7. Rantham P.J.P., Feist, G., Thomasson, S., Thompson, A., Schommer, E., and Ghribi, O., J. Neurochem., 2008, vol. 107, pp. 1722–1729.

    Article  CAS  Google Scholar 

  8. Rodríguez, I.R. and Larrayoz, I.M., J. Lipid Res., 2010, vol. 51, pp. 2847–2862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Girao, H., Mota, M. C., Ramalho, J., and Pereira, P., Exp. Eye Res., 1998, vol. 66, pp. 645–652.

    Article  PubMed  CAS  Google Scholar 

  10. Lemaire–Ewing, S., Prunet, C., Montange, T., Vejux, A., Berthier, A., Bessède, et al., Cell Biol.Toxicol., 2005, vol. 21 no. 2, pp. 97–114.

    Article  PubMed  CAS  Google Scholar 

  11. Huang, J.D., Amaral, J., Lee, J.W., and Rodriguez, I.R., PLoS One, 2014, vol. 9, no. 7. pp. 1–26.

    Google Scholar 

  12. Dreizen, S., Stern, M.H., and Levy, B.M., J. Dental Res., 1978, vol. 57, pp. 412–417.

    Article  CAS  Google Scholar 

  13. Garcia-Cruset, S., Carpenter, K.L., Guardiola, F., Stein, B.K., and Mitchinson M.J., Free Rad. Res., 2001, vol. 35, pp. 31–41.

    Article  CAS  Google Scholar 

  14. Moreira, E.F., Larrayoz, I.M., Lee, J.W., and Rodriguez, I.R., Invest. Ophthalmol. Visual Sci., 2009, vol. 50, pp. 523–532.

    Article  Google Scholar 

  15. Leonarduzzi, G., Sottero, B., and Poli G.T., J. Nut. Biochem., 2002, vol. 13, no. 13 pp. 700–710.

    Article  CAS  Google Scholar 

  16. Indaram, M., Ma, W., Zhao, L., Fariss, R.N., Rodriguez, I.R., and Wong, W.T., Sci. Reports, 2015, vol. 5, p. 9144.

    Article  CAS  Google Scholar 

  17. Vejux, A., Kahn, E., Dumas, D., Bessède, G., Ménétrier, F., Athias, A., et al., Cytometry A, 2005, vol. 64, pp. 87–100.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, H., Wang, Y., Lin, N., Yang, R., Qiu, W., Han, L., et al., Orphanet. J. Rare Dis., 2014, vol. 9, pp. 82–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Perveen, I., Sehar, S., Naz, I., Raza, M.A., Khan, A.J., and Ahmed, S., Int. J. Biosci., 2016, vol. 8, no. 4, pp. 83–93.

    Article  CAS  Google Scholar 

  20. Schloendorn, J., Webb, T., Kemmish, K., Hamalainen, M., Jackemeyer, D., Jiang, L., et al., Rejuvenation Res., 2009, vol. 12, no. 6, pp, 411–419.

    Article  PubMed  CAS  Google Scholar 

  21. de Grey, A.D., Alvarez, P.J., Brady, R.O., Cuervo, A.M., Jerome, W.G., McCarty, P.L., et al., Ageing Res. Rev., 2005, vol. 4, no. 3, pp. 315–338.

    Article  PubMed  CAS  Google Scholar 

  22. Tian, J., Gu, X., Sun, Y., Ban, X., Xiao, Y., Hu, S. and Yu, B., BMC Cardiovasc. Disorders, 2012, vol. 12. pp.70–81.

    Article  CAS  Google Scholar 

  23. Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., et al., Appl. Environ. Microbiol., 2011, vol. 77, no. 22, pp. 7962–7974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cappello, S., Denaro, R., Genovese, M., Giuliano, L., and Yakimov, M.M., Microbiol. Res., 2006, vol. 162, no. 2, pp. 185–190.

    Article  PubMed  CAS  Google Scholar 

  25. Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K., and Harayama S., Environ. Microbiol., 2002, vol. 4, no. 3, pp. 141–147.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, C. and Shao, Z., Int. J. Syst.Evol. Microbiol., 2005, vol. 55, pp. 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  27. Golyshin, P.N., Martins Dos Santos, V.A., Kaiser, O., Ferrer, M., Sabirova, Y.S., Lunsdorf, H., et al., J. Biotechnol., 2003, vol. 106, pp. 215–220.

    Article  PubMed  CAS  Google Scholar 

  28. Dutta, T. K. and Harayama, S., Appl. Environ. Microbiol., 2001, vol. 67, pp. 1970–1974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qiao, N. and Shao, Z., Appl. Environ. Microbiol., 2010, vol. 108, pp. 1207–1216.

    Article  CAS  Google Scholar 

  30. Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R., Abraham, W.R., Lunsdorf, H., and Timmis, K.N., Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 339–348.

    Article  PubMed  CAS  Google Scholar 

  31. Mathieu, J.M., Mohn, W.W., Eltis, L.D., LeBlanc, J.C., Stewart, G.R., Dresen, C., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 1, pp. 352–355.

    Article  PubMed  Google Scholar 

  32. Mathieu, J., Schloendorn, J., Rittmann, B.E., and Alvarez, P.J., Biodegradation. 2008, vol. 19, no. 6. pp. 807–813.

    Article  PubMed  CAS  Google Scholar 

  33. Ghosh S. and Khare. S.K., Chem. Phys. Lipids, 2017, vol. 207, Part B, pp. 253–259.

    Article  PubMed  CAS  Google Scholar 

  34. Ghosh, S. and Khare, S.K., Biores. Technol., 2016, vol. 213, pp. 44–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Perveen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perveen, I., Raza, M.A., Sehar, S. et al. Studies on Degradation of 7-ketocholesterol by Environmental Bacterial Isolates. Appl Biochem Microbiol 54, 262–268 (2018). https://doi.org/10.1134/S0003683818030110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818030110

Keywords

Navigation