Skip to main content
Log in

Genome Shuffling of Bacillus velezensis for Enhanced Surfactin Production and Variation Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Surfactin is a promising microbial lipopeptide with wide applications in food, environmental, agricultural, and pharmaceutical fields. However, its high cost caused by low productivity largely limits the commercial application. In this study, genome shuffling was employed to improve surfactin production in Bacillus velezensis strain LM3403 via recursive protoplast fusion. RT-qPCR analysis was employed to evaluate the transcriptional variance of surfactin synthase genes and surfactin efflux gene to insight into the variance underlying the recombinant strain. After three rounds of genome shuffling, a high-yield and genetic stable recombinant F34 was obtained, exhibiting dramatic improvement in surfactin production (from 229.60 ± 7.10 mg/L to 908.15 ± 5.65 mg/L) with high proportion of long carbon chain homologues. Scale-up fermentation confirmed that F34 had good growth performance and reached the yield of 917.05 ± 10.25 mg/L in a 30 L fermenter, which was 3.99-fold that of the initial strain. RT-qPCR analysis showed that the transcriptional levels of surfactin synthase genes srfAA and sfp, and surfactin efflux gene swrC in F34 were 8.12-fold, 9.27-fold, and 8.45-fold higher than those of LM3403, respectively. The upregulation of genes were consistent with the high surfactin yield in F34, indicating the increased capability of surfactin biosynthesis and transmember efflux in F34. To our knowledge, this is the first attempt to employ genome shuffling to breeding a B. velezensis strain to improve surfactin yield. The research helps us to understand the mechanisms underlying surfactin overproduction and provide references for further rational strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K Arima A Kakinuma G Tamura 1968 Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation Biochem Biophys Res Commun 31 488 494

    Article  CAS  Google Scholar 

  2. F Peypoux JM Bonmatin J Wallach 1999 Recent trends in the biochemistry of surfactin Appl Microbiol Biotechnol 51 553 563

    Article  CAS  Google Scholar 

  3. Y Zhi Q Wu Y Xu 2017 Genome and transcriptome analysis of surfactin biosynthesis in Bacillus Amyloliquefaciens MT45 Sci Rep 7 40976

    Article  CAS  Google Scholar 

  4. NS Shaligram RS Singhal 2010 Surfactin-a review on biosynthesis, fermentation, purification and applications Food Technol Biotechnol 48 119 134

    CAS  Google Scholar 

  5. WC Chen RS Juang YH Wei 2015 Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms Biochem Eng J 103 158 169

    Article  CAS  Google Scholar 

  6. Q Wu Y Zhi Y Xu 2019 Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168 Metab Eng 52 87 97

    Article  CAS  Google Scholar 

  7. IM Banat A Franzetti I Gandolfi G Bestetti MG Martinotti L Fracchia TJ Smyth R Marchant 2010 Microbial biosurfactants production, applications and future potential Appl Microbiol Biotechnol 87 427 444

    Article  CAS  Google Scholar 

  8. SM Mandal AE Barbosa OL Franco 2013 Lipopeptides in microbial infection control: scope and reality for industry Biotechnol Adv 31 338 345

    Article  CAS  Google Scholar 

  9. GV Moro RTR Almeida AP Napp C Porto EJ Pilau DS Ludtke AV Moro MH Vainstein 2018 Identification and ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry characterization of biosurfactants, including a new surfactin, isolated from oil-contaminated environments Microb Biotechnol 11 759 769

    Article  CAS  Google Scholar 

  10. A Bartal A Vigneshwari B Boka M Voros I Takacs L Kredics L Manczinger M Varga C Vagvolgyi A Szekeres 2018 Effects of different cultivation parameters on the production of surfactin variants by a Bacillus subtilis strain Molecules 23 2675

    Article  Google Scholar 

  11. FX Hu YY Liu S Li 2019 Rational strain improvement for surfactin production: enhancing the yield and generating novel structures Microb Cell Factories 18 42

    Article  Google Scholar 

  12. MS Yeh YH Wei JS Chang 2005 Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers Biotechnol Prog 21 1329 1334

    Article  CAS  Google Scholar 

  13. J Willenbacher T Mohr M Henkel S Gebhard T Mascher C Syldatk R Hausmann 2016 Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production J Biotechnol 224 14 17

    Article  CAS  Google Scholar 

  14. M Henkel M Geissler F Weggenmann R Hausmann 2017 Production of microbial biosurfactants: status quo of rhamnolipid and surfactin towards large-scale production Biotechnol J 12 1600561

    Article  Google Scholar 

  15. JQ Wang RJ Guo WC Wang GZ Ma SD Li 2018 Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis J Ind Microbiol Biotechnol 45 1033 1044

    Article  CAS  Google Scholar 

  16. YX Zhang K Perry VA Vinci K Powell WP Stemmer SB Cardayre del 2002 Genome shuffling leads to rapid phenotypic improvement in bacteria Nature 415 644 646

    Article  CAS  Google Scholar 

  17. TA Magocha H Zabed MM Yang JH Yun HH Zhang XH Qi 2018 Improvement of industrially important microbial strains by genome shuffling: current status and future prospects Bioresour Technol 257 281 289

    Article  CAS  Google Scholar 

  18. J Sun H Li Y Ni XM Zhang JS Shi ZH Xu 2017 Genome shuffling of Colletotrichum lini for improving 3β, 7α, 15α-trihydroxy-5-androsten-17-one production from dehydroepiandrosterone J Ind Microbiol Biotechnol 44 937 947

    Article  CAS  Google Scholar 

  19. QG Huang BD Zeng L Liang SG Wu JZ Huang 2018 Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production World J Microbiol Biotechnol 34 121

    Article  Google Scholar 

  20. Y Wang G Zhang X Zhao J Ling 2017 Genome shuffling improved the nucleosides production in Cordyceps kyushuensis J Biotechnol 260 42 47

    Article  CAS  Google Scholar 

  21. M Kordowska-Wiater U Lisiecka K Kostro 2018 Improvement of Candida parapsilosis by genome shuffling for the efficient production of arabitol from L-arabinose Food Sci Biotechnol 27 1395 1403

    Article  CAS  Google Scholar 

  22. R Patnaik S Louie V Gavrilovic K Perry WP Stemmer CM Ryan S Cardayre del 2002 Genome shuffling of Lactobacillus for improved acid tolerance Nat Biotechnol 20 707 712

    Article  CAS  Google Scholar 

  23. S Hu Y You F Xia J Liu W Dai J Liu Y Wang 2019 Genome shuffling improved acid-tolerance and succinic acid production of Actinobacillus succinogenes Food Sci Biotechnol 28 817 822

    Article  CAS  Google Scholar 

  24. KD Jetti RGNS Reddy D Garlapab SK Nammi 2019 Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis Int Microbiol 22 247 254

    Article  CAS  Google Scholar 

  25. L Chen JY Heng SY Qin K Bian 2018 A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight PLoS ONE 13 e0198560

    Article  Google Scholar 

  26. KJ Livak TD Schmittgen 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method Methods 25 402 408

    Article  CAS  Google Scholar 

  27. E Jourdan G Henry F Duby J Dommes JP Barthelemy P Thonart M Ongena 2009 Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis Mol Plant Microbe Interact 22 456 468

    Article  CAS  Google Scholar 

  28. G Henry M Deleu E Jourdan P Thonart M Ongena 2011 The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses Cell Microbiol 13 1824 1837

    Article  CAS  Google Scholar 

  29. C Carrillo JA Teruel FJ Aranda A Ortiz 2003 Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin Biochim et Biophys Acta 1611 91 97

    Article  CAS  Google Scholar 

  30. MM Nakano MA Marahiel P Zuber 1988 Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis J Bacteriol 170 5662 5668

    Article  CAS  Google Scholar 

  31. LE Quadri PH Weinreb M Lei MM Nakano P Zuber CT Walsh 1998 Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases Biochemistry 37 1585 1595

    Article  CAS  Google Scholar 

  32. X Li H Yang D Zhang X Li H Yu Z Shen 2015 Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis J Ind Microbiol Biotechnol 42 93 103

    Article  CAS  Google Scholar 

  33. H Nikaido 1998 Multiple antibiotic resistance and efflux Curr Opin Microbiol 1 516 523

    Article  CAS  Google Scholar 

  34. K Tsuge Y Ohata M Shoda 2001 Gene yerP, involved in surfactin self-resistance in Bacillus subtilis Antimicrob Agents Chemother 45 3566 3573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National natural science foundation project of China (31401543, U1304332), National top youth talent support program for grain industry (LQ2016101), Natural science foundation project of Henan province (182300410042), Innovative Research Team in University of Henan Province (19IRTSTHN008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chong, Xy., Zhang, YY. et al. Genome Shuffling of Bacillus velezensis for Enhanced Surfactin Production and Variation Analysis. Curr Microbiol 77, 71–78 (2020). https://doi.org/10.1007/s00284-019-01807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01807-4

Navigation