Skip to main content
Log in

Genome shuffling improved acid-tolerance and succinic acid production of Actinobacillus succinogenes

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Succinic acid is widely applied to chemical, pharmaceutical, food, and agricultural industries. With the rapid development of these industries, a great demand of succinic acid is required. The acid-tolerance and succinic acid production of Actinobacillus succinogenes strain were improved by using genome shuffling. Results showed that one modified strain AS-F32, with the best acid resistance and the highest succinic acid production, was obtained after 3 cycles of genome shuffling. The minimum growth pH of AS-F32 was 3.5, and the acid production and cell dry weight were 5.1 and 4.8 g/L in flask, improved 2.6 and 1.85 times over the start strain As-R2. Furthermore, the succinic acid yield of As-32 was 31.2 g/L and the dry cell weight was increased 44.4% by maintaining pH 4.8 with 7.0 M NH4OH in 5 L bioreactor, increased 1.1 times than the original strain As-R2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn JH, Jang YS, Sang YL. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 42: 54–66 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Alonso S, Rendueles M, Díaz M. Microbial production of specialty organic acids from renewable and waste materials. Crit. Rev. Biotechnol. 35: 497–513 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Biot-Pelletier D, Martin VJJ. Evolutionary engineering by genome shuffling. Appl. Microbiol. Biotechnol. 98: 3877 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Carlson A, Coggio B, Lau K, Mercogliano C, Millis J. Industrial Production of Succinic Acid. Wiley-VCH Verlag GmbH & Co. KGaA (2016)

    Book  Google Scholar 

  • Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 37: 165–172 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol. 70: 2391–2397 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by actinobacillus succinogenes NJ113. Bioresour. Technol. 153: 327–332 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN, Park SC. Biological conversion of wood hydrolysate to succinic acid by anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang D, Wu Y, Li W, Zhang Y, Xing J, Su Z. One step recovery of succinic acid from fermentation broths by crystallization. Sep. Purif. Technol. 72: 294–300 (2010)

    Article  CAS  Google Scholar 

  • Liang LY, Liu RM, Ma JF, Chen KQ, Jiang M, Wei P. Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase. Biotechnol. Lett. 33: 2439–2444 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Liang L, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresour. Technol. 149: 84–91 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Luna-Flores CH, Palfreyman RW, Krömer JO, Nielsen LK, Marcellin E. Improved production of propionic acid using genome shuffling. Biotechnol. J. 12 (2016)

  • Oh IJ, Kim DH, Oh EK, Lee SY, Lee J. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 19: 167 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Pinazo JM, Domine ME, Parvulescu V, Petru F. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal. Today 239: 17–24 (2015)

    Article  CAS  Google Scholar 

  • Pleissner D, Dietz D, van Duuren JB, Wittmann C, Yang X, Lin CS, Venus J. Biotechnological production of organic acids from renewable resources. Adv. Biochem. Eng. Biotechnol. (2017)

  • Song H, Sang YL. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352–361 (2006)

    Article  CAS  Google Scholar 

  • Thuy NT, Kongkaew A, Flood A, Boontawan A. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresour. Technol. 233: 342 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Vuoristo KS, Mars AE, Sanders JPM, Eggink G, Weusthuis RA (2016) Metabolic Engineering of TCA Cycle for Production of Chemicals. Trends Biotechnol 34(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Wang HK, Sun Y, Chen C, Sun Z, Zhou YC, Shen FD, Zhang HP, Dai YJ. Genome shuffling of Lactobacillus plantarum for improving antifungal activity. Food Control 32: 341–347 (2013)

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Pei X, Yu L, Feng Y. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. J. Biotechnol. 129: 510–515 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Liao JC, Ahn JH, Jang YS, Sang YL. Succinic Acid. Wiley-VCH Verlag GmbH & Co. KGaA (2017)

    Google Scholar 

  • Wu M, Li X, Guo S, Lemma WD, Zhang W, Ma J, Jia H, Wu H, Jiang M, Ouyang P. Enhanced succinic acid production under acidic conditions by introduction of glutamate decarboxylase system in E. coli AFP111. Bioprocess Biosyst. Eng. 40: 1–9 (2016)

  • Ye G, Jiang M, Chen K, Li J, Xi Y, Huang X, Wei P. Breeding of ammonium-tolerant mutants of Actinobacillus succinogenes for succinic acid production and effect of ammonium. Chin. J. Agric. Biotechnol. 26: 183–188 (2010)

    CAS  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J. Biotechnol. 134: 154–159 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Liu SY, Du YH, Feng WJ, Liu JH, Qiao JJ. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis. J. Dairy Sci. 97: 2528–2541 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayré SBD. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhang C, Lu J, Lu Z. Enhancement of fengycin production in Bacillus amyloliquefaciens by ge. Can. J. Microbiol. 62: 431–436 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Jilin Province Sci-tech Department, People’s Republic of China for providing financial support (Grant No. 20140519011JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Wang.

Ethics declarations

Conflict of interest

The authors whose names are listed above state that they have no conflict in terms of either financial interest or nonfinancial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., You, Y., Xia, F. et al. Genome shuffling improved acid-tolerance and succinic acid production of Actinobacillus succinogenes. Food Sci Biotechnol 28, 817–822 (2019). https://doi.org/10.1007/s10068-018-0505-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0505-z

Keywords

Navigation