Skip to main content
Log in

Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alcaino J, Baeza M, Cifuentes V (2014) Astaxanthin and related xanthophylls. In: Martín J-F, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 187–208

    Chapter  Google Scholar 

  2. Amaretti A, Simone M, Quartieri A, Masino F, Raimondi S, Leonardi A, Rossi M (2014) Isolation of carotenoid-producing yeasts from an alpine glacier. Chem Eng Trans 38:217–222

    Google Scholar 

  3. Avalos J, Carmen Limon M (2015) Biological roles of fungal carotenoids. Curr Genet 61:309–324

    Article  PubMed  CAS  Google Scholar 

  4. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15:159–172

    Article  PubMed  CAS  Google Scholar 

  6. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    PubMed  CAS  Google Scholar 

  7. Cardozo KH, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78

    Article  Google Scholar 

  8. Carrasco M, Rozas JM, Barahona S, Alcaino J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  PubMed  CAS  Google Scholar 

  11. Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta 1808:1520–1528

    Article  PubMed  CAS  Google Scholar 

  12. Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land. Evolution 66:2961–2968

    Article  PubMed  CAS  Google Scholar 

  13. Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  PubMed  CAS  Google Scholar 

  14. Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197

    Article  PubMed  CAS  Google Scholar 

  15. Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kirti K, Amita S, Priti S, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 1–13

  17. Landolfo S, Zara G, Zara S, Budroni M, Ciani M, Mannazzu I (2010) Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int J Food Microbiol 141:229–235

    Article  PubMed  CAS  Google Scholar 

  18. Libkind D, Moline M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  PubMed  CAS  Google Scholar 

  19. Madhour A, Anke H, Mucci A, Davoli P, Weber RW (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 66:2617–2626

    Article  PubMed  CAS  Google Scholar 

  20. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  21. Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94:77–99

    Article  PubMed  CAS  Google Scholar 

  22. Marova I, Breierova E, Koci R, Friedl Z, Slovak B, Pokorna J (2004) Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenic yeasts. Ann Microbiol 54:73–86

    CAS  Google Scholar 

  23. McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231

    Article  PubMed  CAS  Google Scholar 

  24. McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198

    Article  PubMed  CAS  Google Scholar 

  25. Moline M, Flores MR, Libkind D, Dieguez Mdel C, Farias ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151

    Article  PubMed  CAS  Google Scholar 

  26. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Pereira VJ, Ricardo J, Galinha R, Benoliel MJ, Barreto Crespo MT (2013) Occurrence and low pressure ultraviolet inactivation of yeasts in real water sources. Photochem Photobiol Sci 12:626–630

    Article  PubMed  CAS  Google Scholar 

  28. Perrier V, Dubreucq E, Galzy P (1995) Fatty acid and carotenoid composition of Rhodotorula strains. Arch Microbiol 164:173–179

    Article  PubMed  CAS  Google Scholar 

  29. Rastogi RP, Singh SP, Incharoensakdi A, Häder D-P, Sinha RP (2014) Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. S Afr J Bot 90:163–169

    Article  CAS  Google Scholar 

  30. Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102

    Article  PubMed  CAS  Google Scholar 

  31. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  32. Shang F, Wen S, Wang X, Tan T (2006) Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. J Biotechnol 122:285–292

    Article  PubMed  CAS  Google Scholar 

  33. Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–173

    Article  Google Scholar 

  34. Vandamme EJ (1992) Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 53:313–327

    Article  PubMed  CAS  Google Scholar 

  35. Vaz ABM, Rosa LH, Vieira MLA, Garcia VD, Brandao LR, Teixeira LCR, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Venkateswarlu K, Kelly DE, Manning NJ, Kelly SL (1998) NADPH cytochrome P-450 oxidoreductase and susceptibility to ketoconazole. Antimicrob Agents Chemother 42:1756–1761

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Wiseman H (1993) Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 326:285–288

    Article  PubMed  CAS  Google Scholar 

  38. Yang SP, Wu ZH, Jian JC (2011) Distribution of marine red yeasts in shrimps and the environments of shrimp culture. Curr Microbiol 62:1638–1642

    Article  PubMed  CAS  Google Scholar 

  39. Zou X (2006) Fed-batch fermentation for hyperproduction of polysaccharide and ergosterol by medicinal mushroom Agaricus brasiliensis. Process Biochem 41:970–974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported through FONDECYT Grant 1130333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Baeza.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarreal, P., Carrasco, M., Barahona, S. et al. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content. Curr Microbiol 72, 94–101 (2016). https://doi.org/10.1007/s00284-015-0928-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0928-1

Keywords

Navigation