Skip to main content

Advertisement

Log in

Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A diverse group of soil bacteria known as plant growth promoting rhizobacteria (PGPR) is able to inhabit the area close to plant roots and exert beneficial effects on plant growth. Beneficial interactions between rhizospheric bacteria and plants provide prospects for isolating culturable PGPR that can be used as bio-fertilizers for sustainable crop production in communities that cannot easily afford chemical fertilizers. This study was conducted with the aim of isolating rhizospheric bacteria from grasses along the Kavango River and screening the bacterial isolates for plant growth promoting characteristics. The bacteria were isolated from rhizospheres of Phragmites australis, Sporobolus sp., Vetiveria nigritana, Pennisetum glaucum and Sorghum bicolor. The isolates were screened for inorganic phosphate solubilization, siderophore production and indole-3-acetic acid (IAA) production. The nitrogen-fixing capability of the bacteria was determined by screening for the presence of the nifH gene. Up to 21 isolates were obtained from P. australis, Sporobolus sp., S. bicolor, P. glaucum and V. nigritana. The genera Bacillus, Enterobacter, Kocuria, Pseudomonas and Stenotrophomonas, identified via 16S rDNA were represented in the 13 PGPR strains isolated. The isolates exhibited more than one plant growth promoting trait and they were profiled as follows: three phosphate solubilizers, four siderophore producers, eight IAA producing isolates and five nitrogen-fixers. These bacteria can be used to develop bio-fertilizer inoculants for improved soil fertility management and sustainable production of local cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  2. Barraquio WL, Segubre EM, Gonzalez MAS, Verma SC, James EK, Ladha JK, Tripathi AK (2000) Diazotrophic enterobacteria: what is their role in the rhizosphere of rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. Kluwer Academic Publishers, Philippines, pp 93–118

    Google Scholar 

  3. Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Florida, pp 331–345

    Google Scholar 

  4. Burbano Roa CS (2011) Molecular analysis of root-associated diazotrophs in important plants from Southern Africa and South America. Dissertation, University of Bremen

  5. Carvalho-Assef APDA, Gomes MZR, Silva ARA, Werneck L, Rodrigues CAS, Souza MJ, Asensi MD (2010) IMP-16 in Pseudomonas putida and Pseudomonas stutzeri: potential reservoirs of multidrug resistance. J Med Microbiol 59(9):1130–1131

    Article  PubMed  Google Scholar 

  6. Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci Technol J 8(1):18–23

    Google Scholar 

  7. Edi-Premono M, Moawad MA, Vleck PLG (1996) Effect of phosphate solubilizing Pseudmonas putida on the growth of maize and its survival in the rhizosphere. Indones. J Crop Sci 11:13–23

    Google Scholar 

  8. Fletcher J, Leach JE, Eversole K, Tauxe R (2013) Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology 103(4):306–315

    Article  PubMed  Google Scholar 

  9. Garcia CA, De Rossi BP, Alcaraz E, Vay C, Franco M (2012) Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev Argent Microbiol 44(3):150–154

    CAS  PubMed  Google Scholar 

  10. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

  11. Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA producing bacteria isolated from saline desert. J Plant Interact 9(1):566–576

    Article  Google Scholar 

  12. Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Germany, pp 333–364

    Google Scholar 

  13. Grönemeyer J, Berkelmann D, Mubyana-John T, Haiyambo D, Chimwamurombe P, Kasaona B, Hurek T, Reinhold-Hurek B (2014) A survey for plant-growth-promoting rhizobacteria and symbionts associated with crop plants in the Okavango region of Southern Africa. Biodivers Ecol 5:287–294

    Article  Google Scholar 

  14. Grönemeyer JL, Burbano Roa CS, Hurek T, Reinhold-Hurek B (2012) Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356(1–2):67–82

    Article  Google Scholar 

  15. Hopkins DW, Dungait JA (2010) Soil microbiology and nutrient cycling. In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer, The Netherlands, pp 59–80

    Chapter  Google Scholar 

  16. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de pathologie vegetale et phyto-bacteriologie (Ed.), Proceedings of the 4th International Conference on Plant Pathogenic Bacteria 2: 879–882

  17. Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Article  Google Scholar 

  18. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Ann Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  19. Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44(1):93–101

    Article  CAS  Google Scholar 

  20. Matthijs S, Baysse C, Koedam N, Tehrani KA, Verheyden L, Budzikiewicz H, Cornelis P (2004) The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52(2):371–384

    Article  CAS  PubMed  Google Scholar 

  21. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47(2):110–117

    Article  CAS  PubMed  Google Scholar 

  22. Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188(10):3664–3673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Piggot PJ (2009) Bacillus Subtilis. In: Schaechter M (ed) Desk encyclopedia of microbiology, 2nd edn. Academic Press, California, pp 154–165

    Google Scholar 

  24. Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 195–230

    Chapter  Google Scholar 

  25. Reinhold B, HurekT Niemann EG, Fendrik I (1986) Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. App Environ Microb 52(Suppl 3):520

    CAS  Google Scholar 

  26. Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 50(2):649–659

    Article  CAS  PubMed  Google Scholar 

  27. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7(7):514–525

    Article  CAS  PubMed  Google Scholar 

  28. Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190(21):7200–7208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microb 52:1–15

    Article  Google Scholar 

  30. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  31. Sato A, Watanabe T, Unno Y, Purnomo E, Shinano T, Osaki M (2009) Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L. Microb Environ 24(8):81–87

    Article  Google Scholar 

  32. Schütz A, Golbik R, Tittmann K, Svergun DI, Koch MHJ, Hübner G, König S (2003) Studies on structure–function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur J Biochem 270:2322–2331

    Article  PubMed  Google Scholar 

  33. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  34. Tilston EL, Sizmur T, Dixon GR, Otten W, Harris JA (2010) The Impact of Land-Use Practices on Soil Microbes. In: Dixon GR, Tilson EL (eds) Soil microbiology and sustainable crop production. Springer, The Netherlands, pp 273–295

    Chapter  Google Scholar 

  35. Turrientes MC, Baquero MR, Sánchez MB, Valdezate S, Escudero E, Berg G, Martínez JL (2010) Polymorphic mutation frequencies of clinical and environmental Stenotrophomonas maltophilia populations. Appl Environ Microbiol 76(6):1746–1758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. United Nations Development Programme (UNDP) (2010) Country pilot partnership: adapting to climate change through the improvement of traditional crops and livestock farming in Namibia. www.thegef.org/gef/sites/thegef.org/files/gef_prj_docs/GEFProjectDocuments/M&E/TE/FY2012/UNDP/G002915/2915_3598_Namibia_CCA_TE.pdf

  37. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71(2):137–144

    Article  CAS  PubMed  Google Scholar 

  38. World Bank (2009) Namibia: country brief. Open knowledge repository. https://openknowledge.worldbank.org/handle/10986/2630

  39. Yasmin F, Othman R, Sijam K, Saad MS (2010) Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. Afr J Microbiol Res 3(11):815–821

    Google Scholar 

Download references

Acknowledgments

This study was funded by The Future Okavango (TFO) Project through the BMBF (Federal Ministry of Education and Research, Germany) Research Framework Programme, Research for Sustainable Development (FONA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Chimwamurombe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haiyambo, D.H., Chimwamurombe, P.M. & Reinhold-Hurek, B. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics. Curr Microbiol 71, 566–571 (2015). https://doi.org/10.1007/s00284-015-0886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0886-7

Keywords

Navigation