Skip to main content

The Impact of Land-Use Practices on Soil Microbes

  • Chapter
  • First Online:
Soil Microbiology and Sustainable Crop Production

Abstract

The extensive use of land resources for food production, fibre for construction, wood pulp for paper, removal for extractive industries, sealing for urban and industrial development and as a receiver (either deliberate or accidental) of polluting substances has wrought huge changes in the chemistry, structure and biology of soils, away from their natural state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaye DA, Lawlor K, Hirsch PJ et al (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102

    Article  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Adl S, Coleman DC, Read F (2006) Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric Ecosys Environ 114:323–334

    Article  Google Scholar 

  • Alguacil MM, Lumini E, Roldan A et al (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  PubMed  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Angers DA, Peasant A, Vigneux J (1992) Early cropping-induced changes in soil aggregation, organic matter, and microbial biomass. Soil Sci Soc Am J 56:115–119

    Article  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI et al (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  PubMed  CAS  Google Scholar 

  • Bending G, Rodriguez-Cruz M, Lincoln SD (2007) Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82–88

    Article  PubMed  CAS  Google Scholar 

  • Bentham H, Harris JA, Birch P et al (1992) Habitat classification and soil restoration assessment using analysis of soil microbiological and physico-chemical characteristics. J Appl Ecol 29:711–718

    Article  Google Scholar 

  • Bloem J, Hopkins DW, Benedetti A (eds) (2005) Microbiological methods for assessing soil quality. CABI, Wallingford, UK

    Google Scholar 

  • Böhme L, Langer U, Böhme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric Ecosyst Environ 109:141–152

    Article  Google Scholar 

  • Bolton HJ, Elliott LF, Papendick RI (1985) Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biol Biochem 17:297–302

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilisation patterns. Microb Ecol 35:265–278

    Article  PubMed  CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N et al (1998) Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bronick CJ, Lal R (2005) Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. Soil Till Res 81:239–252

    Article  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zweiten L (2006) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406

    Article  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM et al (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    Article  PubMed  CAS  Google Scholar 

  • Carminati A, Kaestner A, Lehmann P et al (2008) Unsaturated water flow across soil aggregate contacts. Adv Water Resour 31:1221–1232

    Article  Google Scholar 

  • Chodak M, Pietrzykowski M, Niklinska M (2009) Development of microbial properties in a chronosequence of sandy mine spoils. Appl Soil Ecol 41:259–268

    Article  Google Scholar 

  • Cohen JE (2003) Human population: the next century. Science 302:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Davies CS (1999) Derelict land. In: Alexander DE, Fairbridge RW (eds) Encyclopaedia of environmental science. Springer, New York

    Google Scholar 

  • DEFRA (2009) A code of good agricultural practice for farmers, growers and land managers. Department for Environment, Food and Rural Affairs and The Stationery Office, Norwich, UK

    Google Scholar 

  • Degens B, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309–1320

    Article  CAS  Google Scholar 

  • Demoling LA, Bååth E, Greve G et al (2009) Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol Biochem 41:840–848

    Article  CAS  Google Scholar 

  • Deurer M, Grinev D, Young IM et al (2009) The impact of soil carbon management on soil macro-pore structure: a comparison of two apple orchard systems in New Zealand. Eur J Soil Sci 60:945–955

    Article  CAS  Google Scholar 

  • Doran JW, Fraser DG, Culick MN et al (1987) Influence of alternative and conventional agricultural management on soil microbial processes and nitrogen availability. Am J Alternat Agr 2:99–109

    Article  Google Scholar 

  • Edgerton DL, Harris JA, Birch P et al (1995) Linear relationship between aggregate stability and microbial biomass in three restored soils. Soil Biol Biochem 27:1499–1501

    Article  CAS  Google Scholar 

  • Eickhorst T, Tippkötter R (2008) Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil Biol Biochem 40:1883–1891

    Article  CAS  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Frey B, Kremer J, Rudt A et al (2009) Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol 45:312–320

    Article  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G et al (2001) The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  PubMed  CAS  Google Scholar 

  • Gosling P, Hodge A, Goodlass G et al (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Guerrero C, Moral R, Gomez I et al (2007) Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Bioresour Technol 98:3259–3264

    Article  PubMed  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S et al (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

    Article  CAS  Google Scholar 

  • Hammesfahr U, Heuer H, Manzke B et al (2008) Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol Biochem 40:1583–1591

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H et al (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  PubMed  CAS  Google Scholar 

  • Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808

    Article  Google Scholar 

  • Harris JA (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Birch P (1990a) The effects of heavy civil engineering and stockpiling on the soil microbial community. In: Howsam P (ed) Micro-organisms in civil engineering, Proceedings of the conference, FEMS symposium No. 59. London, pp 274–286

    Google Scholar 

  • Harris JA, Birch P (1990b) Application of the principles of microbial ecology to the assessment of surface mine reclamation. In: Skousen J, Sencindiver J, Samuel D (eds) Proceedings of the 1990 mining and reclamation conference. American Society of Surface Mining and Reclamation, West Virginia, pp 111–120

    Google Scholar 

  • Harris JA, Steer J (2003) Modern methods for estimating soil microbial biomass and diversity: an integrated approach. In: Sasek V (ed) The utilization of bioremediation to reduce soil contamination: problems and solutions, NATO CCMS Symposium. Kluwer, Dordrecht, pp 29–48

    Chapter  Google Scholar 

  • Harris JA, Birch P, Short KC (1989) Changes in the microbial community and physico-chemical characteristics of topsoils stockpiled during opencast mining. Soil Use Manage 5:161–168

    Article  Google Scholar 

  • Harris JA, Birch P, Short KC (1993) Changes in the microbial community during the construction and subsequent storage of soil stockpiles: a strategist theory interpretation. Restor Ecol 1:88–100

    Article  Google Scholar 

  • Hassink J, Voshaar JH, Nijhus EH et al (1991) Dynamics of microbial populations of a reclaimed-polder soil under a conventional and a reduced-input farming system. Soil Biol Biochem 23:515–524

    Article  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C et al (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S et al (2003) The contribution of arbuscular mycorrhizal fungi in maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Kandeler E, Stemmer M, Klimanek E-M (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273

    Article  CAS  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74:65–76

    Article  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos T Roy Soc B-Biol Sci 363:685–701

    Article  CAS  Google Scholar 

  • Kirchner MJ, Wollum AG, King LD (1993) Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci Soc Am J 57:1289–1295

    Article  CAS  Google Scholar 

  • Lacombe S, Bradley RL, Hamel C et al (2009) Do tree-based intercropping systems increase the diversity and stability of soil microbial communities? Agric Ecosyst Environ 131:25–31

    Article  Google Scholar 

  • Lal R (2007) Soil science and the carbon civilization. Soil Sci Soc Am J 71:1425–1437

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitigat Adapt Strateg Global Change 11:403–427

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:624–626

    Article  PubMed  CAS  Google Scholar 

  • McBratney AB (1998) Some considerations on methods for spatially aggregating and disaggre­gating soil information. Nutr Cycl Agroecosyst 50(1–3):51–62

    Article  Google Scholar 

  • Mummey DL, Stahl PD, Buyer JS (2002) Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Appl Soil Ecol 21:251–259

    Article  Google Scholar 

  • Nunan N, Wu K, Young IM et al (2002) In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb Ecol 44:296–305

    Article  PubMed  CAS  Google Scholar 

  • O’Neil MJ, Smith A, Heckelmann PE (eds) (2001) The Merck Index, 13th edn. Merck, Whitehouse Station, NJ

    Google Scholar 

  • Or D, Smets BF, Wraith JM et al (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv Water Resour 30:1505–1527

    Article  Google Scholar 

  • Palmer RC, Burton RGO, Hannam JA et al (2006) Comparison of soil structural conditions in Tone and Parrett catchments during winter periods 2002–03 and 2005–06. Environment Agency Contract Report

    Google Scholar 

  • Pawlett M, Hopkins DW, Moffett BF et al (2009) The effect of earthworms and liming on soil microbial communities. Biol Fertil Soils 45:361–369

    Article  Google Scholar 

  • Peacock AD, McNaughton SJ, Cantu JM et al (2001a) Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat. Ecol Indic 1:113–121

    Article  CAS  Google Scholar 

  • Peacock AD, Mullen MD, Ringelberg DB et al (2001b) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019

    Article  CAS  Google Scholar 

  • Petersen SO, Henriksen K, Mortensen GK et al (2003) Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res 72:139–152

    Article  Google Scholar 

  • Pohlmeier A, Haber-Pohlmeier S, Stapf S (2009) A fast field cycling nuclear magnetic resonance relaxometry study of natural soils. Vadose Zone J 8:735–742

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microb Ecol 42:1–14

    CAS  Google Scholar 

  • Ritz K (2007) The Plate Debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol 60:358–362

    Article  PubMed  CAS  Google Scholar 

  • Ritz K, Black HIJ, Campbell CD et al (2009) Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol Indic 9:1212–1221

    Article  CAS  Google Scholar 

  • Ruzek L, Vorisek K, Sixta J (2001) Microbial biomass-C in reclaimed soil of the Rhineland (Germany) and the north Bohemian lignite mining areas (Czech Republic): measured and predicted values. Restor Ecol 9:370–377

    Article  Google Scholar 

  • Sasov A, Liu X, Rushmer D (2008) Compact micro-CT/micro-XRF system for non-destructive 3D analysis of internal chemical composition. In: Luysberg M, Tillmann K, Weirich T (eds) Instrumentation and methods, vol 1, EMC 2008. Springer, Berlin, pp 705–706. doi:10.1007/978-3-540-85156-1_353

    Google Scholar 

  • Schaap JD, Lehmann P, Kaestner A et al (2008) Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography. Adv Water Resour 31:1233–1241

    Article  Google Scholar 

  • Scullion J (1994) Restoring farmland after coal: the Bryngwyn project. British Coal Opencast, Mansfield, UK

    Google Scholar 

  • Sherwood S, Uphof N (2000) Soil health: research, practice and policy for a more regenerative agriculture. Appl Soil Ecol 15:85–97

    Article  Google Scholar 

  • Simmons BL, Coleman DC (2008) Microbial community response to transition from conventional to conservation tillage. Appl Soil Ecol 40:518–528

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK et al (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Speir TW, Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and application. Marcel Dekker, New York, pp 407–432

    Google Scholar 

  • Stahl PD, Perryman BL, Sharmasarkar S et al (2002) Topsoil stockpiling versus exposure to traffic: a case study on in situ uranium wellfields. Restor Ecol 10:129–137

    Article  Google Scholar 

  • Steer J, Harris JA (2000) Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol Biochem 32:869–878

    Article  CAS  Google Scholar 

  • Steiner C, Das KC, Garcia M et al (2008) Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359–366

    Article  Google Scholar 

  • Stoob K, Singer HP, Stettler S et al (2006) Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J Chromatgr A 1128:1–9

    Article  CAS  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL et al (2006) Scope and strategies for regulation of nitrification in agricultural systems – challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Subbarao GV, Wang HY, Ito O et al (2007) NH +4 triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257

    Article  CAS  Google Scholar 

  • Tippkötter R, Ritz K, Darbyshire JF (1986) The preparation of soil thin-sections for biological studies. J Soil Sci 37:681–690

    Article  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Toyota K, Kuninaga S (2006) Comparison of soil microbial community between soils amended with or without farmyard manure. Appl Soil Ecol 33:39–48

    Article  Google Scholar 

  • van Diggelen R, Grootjans AP, Harris JA (2001) Ecological restoration: state of the art or state of the science? Restor Ecol 9:115–118

    Article  Google Scholar 

  • Wakelin SA, Gregg AL, Simpson RJ et al (2009) Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia 52:237–251

    Article  CAS  Google Scholar 

  • Wan J, Tyliszczak T, Tokunaga TK (2007) Organic carbon distribution, speciation, and elemental correlations within soil micro aggregates: applications of STXM and NEXAFS spectroscopy. Geochim Cosmochim Acta 71:5439–5449

    Article  CAS  Google Scholar 

  • Wander MM, Hedrick DS, Kaufman D et al (1995) The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170:87–97

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  PubMed  CAS  Google Scholar 

  • Watt M, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity – a review. Aust J Soil Res 44:299–317

    Article  Google Scholar 

  • Yin B, Crowley D, Sparovek G et al (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma L. Tilston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tilston, E.L., Sizmur, T., Dixon, G.R., Otten, W., Harris, J.A. (2010). The Impact of Land-Use Practices on Soil Microbes. In: Dixon, G., Tilston, E. (eds) Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_7

Download citation

Publish with us

Policies and ethics