Skip to main content
Log in

Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhadauriya P, Gupta R, Singh S, Bisen PS (2008) n-Alkanes variability in the diazotrophic cyanobacterium Anabaena cylindrica in response to NaCl stress. World J Microbiol Biotechnol 24:139–141

    Article  CAS  Google Scholar 

  2. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  3. Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9:e85140

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  PubMed  Google Scholar 

  5. Elhai J (1993) Strong and regulated promoters in the cyanobacterium Anabaena PCC7120. FEMS Microbiol Lett 114:179–184

    Article  CAS  PubMed  Google Scholar 

  6. Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci USA 110:7636–7641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphaothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol 77:5178–5183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapudi S, Navarro P, Cross F, Roberts JM (2013) Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS ONE 8:e58307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  10. Waditee-Sirisattha R, Singh M, Kageyama H, Sittipol D, Rai AK, Takabe T (2012) Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerace to salt. Arch Microbiol 194:909–914

    Article  CAS  PubMed  Google Scholar 

  11. Waditee-Sirisattha R, Kageyama H, Sopun W, Tanaka Y, Takabe T (2014) Identification and up-regulation of biosynthetic genes required for accumulation of mycosporine-2-glycine under salt stress in halotolerant cyanobacterium Aphanothece halophytica. Appl Environ Microbiol 80:1763–1769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotech Biofuels 6:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan and the International Research Center for Natural Environmental Science of Meijo University.

Conflict of interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiro Takabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kageyama, H., Waditee-Sirisattha, R., Sirisattha, S. et al. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes. Curr Microbiol 71, 115–120 (2015). https://doi.org/10.1007/s00284-015-0833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0833-7

Keywords

Navigation