Skip to main content
Log in

Biological Activities and Identification of Bioactive Metabolite from Endophytic Aspergillus flavus L7 Isolated from Aegle marmelos

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aegle marmelos, a well-known Indian plant with medicinal and religious importance, has been extensively used in Indian traditional medicine. The present study aimed to isolate, identify, and evaluate the biological activities of endophytic fungi from A. marmelos. One of the isolates, labeled as L7, was identified as Aspergillus flavus using morphology and ITS gene sequence. Total phenolic and flavonoid contents in the culture filtrate were found to be 65.77 mg GAE/ml and 158.33 mg quercetin/ml of crude extract, respectively. The extract showed excellent antimicrobial activity against common human bacterial and fungal pathogens. The test extract at 700 µg/ml, which notably reduced the concentration of DPPH-free radical as percent DPPH scavenging activity, was found to be the highest (64.53 %). The extract, at the concentration of 2 mg/ml, produced 70 % inhibition of hemolysis of RBCs compared to 78 % produced by standard drug (Ibuprofen). Chemical profiling of the fermented extract using TLC followed by UV and FTIR revealed the presence of flavonoids. The HPLC analysis confirmed the presence of bioflavonoid rutin in the extract. To the best of our knowledge, this is the first report on production of bioactive flavonoid by endophytic Aspergillus flavus obtained from A. marmelos and its pharmaceutical potential. In conclusion, the endophytic Aspergillus flavus obtained from the A. marmelos could be explored as an economic and potential natural resource with diverse pharmaceutical and biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold A, Mayard Z, Gilberk GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  2. Arulpriya P, Lalitha P, Hemalatha S (2010) In vitro antioxidant testing of the extracts of Samanea saman (Jacq) Merr. Der Chemica Sinica 1(2):73–79

    CAS  Google Scholar 

  3. Chen P, Ozcan M, Harnly J (2007) Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products. Anal Bioanal Chem 389:251–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chopra K, Singh M (1994) Involvement of oxygen free radicals in cardioprotective effect of rutin—a naturally occurring flavonoid. Indian J Pharmacol 26:13–18

    CAS  Google Scholar 

  5. Christel QD, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckweat hulls and flour. J Ethnopharmacol 72:35–42

    Article  Google Scholar 

  6. Dubber MJ, Kanfer I (2004) High performance liquid chromatographic determination of selected flavonols in Ginko biloba solid oral dosage forms. J Pharm Sci 7(3):303–309

    CAS  Google Scholar 

  7. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartaliniarobillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724

    Article  CAS  Google Scholar 

  8. Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375

    Article  Google Scholar 

  9. Hata K, Futai K, Tsuda M (1998) Seasonal and needle age-dependent changes of the endophytic mycobiota in Pinus thunbergii and Pinus densiflora needles. Can J Bot 76:245–250

    Google Scholar 

  10. Hess SM, Milloning RC (1972) In: Lepow LH, Wards PA (eds) Inflammation, mechanism and control. Academic Press, New York, pp 1–72

    Google Scholar 

  11. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2007) Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol 23:1253–1263

    Article  CAS  Google Scholar 

  12. Jagetia GC, Venkatesh P, Baliga MS (2005) Aegle marmelos (L.) corr. inhibits the proliferation of transplanted Ehrlich ascites carcinoma in mice. Biol Pharm Bull 28:58–60

    Article  CAS  PubMed  Google Scholar 

  13. Joshi PV, Patil RH, Maheshwari VL (2009) In vitro anti-diarrheal activity and toxicity profile of Aegle marmelos Correa ex. Roxb. dried fruit pulp. Nat Prod Radiance 8(5):498–502

    Google Scholar 

  14. Kalyanpur SG, Pohujani S, Nack SR, Seth UK (1968) Study of biochemical effects of anti-inflammatory drugs in carrageenin-induced oedema and cotton pellet granuloma. Biochem Pharmacol 17:797–803

    Article  CAS  PubMed  Google Scholar 

  15. Kumar DSS, Lau CS, Wan JMF, Yang D, Hyde KD (2005) Immunomodulatory compounds from Pestalotiopsis leucothes (HKUCC 10197), an endophytic fungus of Tripterygium wilfordii. Life Sci 78:147–156

    Article  CAS  PubMed  Google Scholar 

  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  17. Lee KH, Thong TU (1970) Mechanism of action of retinyl compounds on wound-healing, effects of active retinyl derivatives on granuloma formation. J Pharma Sci 59:1157–1159

    Article  Google Scholar 

  18. Li Y, Song YC, Liu JY, Ma YM, Tan RX (2005) Anti-Helicobacter pylori substances from endophytic fungal cultures. World J Microbial Biotechnol 21:553–558

    Article  CAS  Google Scholar 

  19. Liu JY, Huang LL, Ye YH, Zou WX, Guo ZJ, Tan RX (2005) Antifungal and new metabolites of Myrothecium sp. Z16, a fungus associated with white croaker Argyrosomus argentatus. J Appl Microbial 100:195–202

    Article  Google Scholar 

  20. Nithya K, Muthumary J (2011) Bioactive metabolite produced by Phmopsis sp., an endophytic fungus in Allamanda cathartica Linn. Res Sci Tech 3:44–48

    Google Scholar 

  21. Oktay M, Gulein I, Kufreviolglu I (2003) Antioxidant, antimicrobial, anticancer and analgesic activities of nettle (Urticadioicia L.). J Ethnopharmacol 90:205–215

    Google Scholar 

  22. Oyedapo OO, Akinpelu BA, Akinwunmi KF, Adeyinka MO, Sipeolu FO (2010) RBC stabilizing potentials of extracts of Lantana camara and its fractions. Inter J Plant Physiol Biochem 2(4):46–51

    Google Scholar 

  23. Oyedapo OO, Sab FC, Olagunju JA (1999) Bioactivity of fresh leaves of Lantana camara. Biomed Lett 59:175–183

    Google Scholar 

  24. Patil MP, Patil RH, Maheshwari VL (2012) A novel and sensitive Agar Plug Assay for screening of asparginase producing endophytic fungi from Aegle marmelos. Acta Biolo Scz 56:1–3

    Google Scholar 

  25. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecology of leaves. Springer, New York, p 179

    Chapter  Google Scholar 

  26. Purohit A, Maikhuri RK, Rao KS, Nautiyal S (2001) Impact of bark removal on survival of Taxus baccata L. (Himalayan yew) in Nanda Devi Biosphere Reserve, Garwhal Himalaya, India. Curr Sci 81:586–590

    Google Scholar 

  27. Qiu M, Rui-sheng Xie Yu, Shi Haihua Zhang, Min Hai (2010) Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba. L. Chem Ann Microbiol 60:143–150

    Article  CAS  Google Scholar 

  28. Radu S, Kqueen CY (2002) Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumor activity. J Med Sci 9:23–33

    Google Scholar 

  29. Raper KB, Fennell DL (1965) The genus Aspergillus. Williams and Willkins, Baltimore, pp 1–686

    Google Scholar 

  30. Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, vol 2. Central Drug Research Institute Lucknow, Publications and Information directorate, New Delhi, pp 17–23

    Google Scholar 

  31. Sadique J, Al-Rqobah NA, Bughaith MF, El-Gindy AR (1989) The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 5:525–532

    Google Scholar 

  32. Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT (2006) Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Micobiol Biotechnol 22:1185–1195

    Article  CAS  Google Scholar 

  33. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  35. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  36. Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  37. Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Micobiol Biotechnol 23:79–83

    Article  Google Scholar 

  38. Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwiser KK, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with antimicrobial, anti-cancer, anti-malarial activities isolated from Thai medicinal plants. World J Micobiol Biotechnol 20:265–272

    Article  Google Scholar 

  39. Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res 37:99–105

    CAS  Google Scholar 

  40. Wu ZH, Wang TH, Huang W, Qu YB (2001) A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20:575–577

    CAS  Google Scholar 

  41. Xu L, Zhou J, Zhao J, Li X, Li J, Wang C (2007) Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett Appl Microbiol 46:68–72

    Article  PubMed  Google Scholar 

  42. Yuan JI, Jian Nan BI, Xu Bing YAN, Dong ZHU (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22:1–6

    Article  CAS  Google Scholar 

  43. Yuna C, Dawei Y, Xiufeng B, Sun Baoshan, Zhao Yuqing, Zhang Yixuan (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance provided by the SERB, DST, New Delhi, in terms of fast-track grant (File no. SR/FT/LS-43/2012) is gratefully acknowledged. RHP is also thankful to NCCS, Pune, for ITS sequencing of endophytic isolates.

Conflict of interest

The authors declare that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Maheshwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, M.P., Patil, R.H. & Maheshwari, V.L. Biological Activities and Identification of Bioactive Metabolite from Endophytic Aspergillus flavus L7 Isolated from Aegle marmelos . Curr Microbiol 71, 39–48 (2015). https://doi.org/10.1007/s00284-015-0805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0805-y

Keywords

Navigation