Skip to main content
Log in

Utilization of Phenol and Naphthalene Affects Synthesis of Various Amino Acids in Corynebacterium glutamicum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This article reports multiple metabolic pathways of amino acid production via phenol and naphthalene use by Corynebacterium glutamicum. Biodegradation of phenol and naphthalene by C. glutamicum occurred in a mineral salt medium containing 1% yeast extract without any additional carbon sources. Among the amino acids synthesized via the TCA-cycle, glutamate synthesis increased in C. glutamicum supplemented with 8.5 mM phenol or with 4.2 mM naphthalene. Aspartate synthesis significantly increased when cultured with 4.2 mM naphthalene, and increased synthesis of threonine and histidine was observed only with the addition of phenol. In addition, synthesis of valine and leucine decreased considerably under both conditions. Moreover, the bioconversion of glutamate from phenol and naphthalene is regulated by a transcriptional regulator, FarR, at the transcription level of the gltBD and gdh genes. In this study, we found that the utilization of phenol and naphthalene enhances biosynthesis of several amino acids and that this mechanism is controlled by a transcriptional regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Annweiler E, Richnow HH, Antranikian G et al (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by thermophile Bacillus thermoleovarans. Appl Environ Microbiol 66:518–523

    Article  CAS  PubMed  Google Scholar 

  2. Asakura A, Kimura E, Usuda Y et al (2007) Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  PubMed  Google Scholar 

  3. Beckers B, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    CAS  PubMed  Google Scholar 

  4. Bott M (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15:417–425

    Article  CAS  PubMed  Google Scholar 

  5. Brinkrolf K, Brune I, Tauch A (2006) Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Genet Mol Res 5:773–789

    PubMed  Google Scholar 

  6. Crooks GE, Hon G, Chandonia JM et al (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  Google Scholar 

  7. Díaz E (2004) Bacteriol degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

    PubMed  Google Scholar 

  8. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  9. Hänßler E, Müller T, Jeßberger N et al (2007) FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum. Appl Environ Microbiol 76:625–632

    Google Scholar 

  10. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  11. Kalinowski J, Bathe B, Bartels D et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  12. Karigar C, Mahesh A, Nagenahalli M et al (2006) Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation 17:47–55

    Article  CAS  PubMed  Google Scholar 

  13. Lee SY, Kim Y-H, Min J (2010) ArgR binding upstream of argB in Corynebacterium glutamicum: DNA-binding affinity of ArgR under proline-supplemented conditions. Appl Microbiol Biotechnol 86:235–242

    Article  CAS  PubMed  Google Scholar 

  14. Lee SY, Shin HS, Park J-S et al (2010) Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl Microbiol Biotechnol 85:713–720

    Article  CAS  PubMed  Google Scholar 

  15. Marx A, Striegel K, Graaf AA et al (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56:168–180

    Article  CAS  PubMed  Google Scholar 

  16. Meer JR, de Vos WM, Harayama S et al (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed  Google Scholar 

  17. Peng R-H, Xiong A-S, Xue Y et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  18. Qi S-W, Chaudhry MT, Zhang Y et al (2007) Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Proteomics 7:3775–3787

    Article  CAS  PubMed  Google Scholar 

  19. Quail MA, Dempsey CE, Guest JR (1994) Identification of a fatty acyl responsive regulator (FarR) in Escherichia coli. FEMS Lett 356:183–187

    CAS  Google Scholar 

  20. Rigali S, Derouaux A, Giannotta F et al (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515

    Article  CAS  PubMed  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  22. Shen X-H, Huang Y, Liu S-J (2005) Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum. Microbes Environ 20:160–167

    Article  Google Scholar 

  23. Tam LT, Eymann C, Albrecht D et al (2006) Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ Microbiol 8:1408–1427

    Article  CAS  Google Scholar 

  24. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R01-2008-000-20773-0). The authors are grateful for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiho Min.

Additional information

Yang-Hoon Kim is the co-corresponding author of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Le, TH., Chang, ST. et al. Utilization of Phenol and Naphthalene Affects Synthesis of Various Amino Acids in Corynebacterium glutamicum . Curr Microbiol 61, 596–600 (2010). https://doi.org/10.1007/s00284-010-9658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9658-6

Keywords

Navigation